Answer:
Step 4, because she should have divided rather than subtracting 6.
Step-by-step explanation:
The mean absolute deviation formula,
[tex]MAD=\frac{\sum |x-\mu|}{n}[/tex]
Where,
[tex]\mu[/tex] represents mean,
n represents the number of items,
x represents an item,
Here, data items are,
22, 27, 34, 29, 20, and 18
Thus, the steps for finding the mean absolute deviation are as follows,
Step 1 : Finding means,
[tex]\frac{22+27+34+29+20+18}{6}=25[/tex]
Step 2 : absolute values of the given data items,
[tex]|22-25|=3,[/tex] [tex]|27-25|=2,[/tex] [tex]|34-25|=9,[/tex] [tex]|29-25|=4,[/tex] [tex]|20-25|=5,[/tex] [tex]|18-25|=7[/tex]
Step 3 : Sum of all absolute values,
[tex]3+2+9+4+5+7=30[/tex]
Step 4 : Divide sum of absolute value by number of data items,
[tex]\frac{30}{6}=5[/tex]
Hence, step 4 contains the first error, because she should have divided rather than subtracting 6.