Answer:
The probability that the two sweet will not be same type is [tex]\frac{111}{190}[/tex]
Step-by-step explanation:
P(two sweets not same) = 1 - P( two sweets will be same)
There are 3 possible outcomes where two sweets will be same.
1. it can be two liquor-ice, 2. it can be 2 mint and 3. it can be two humbug
P(two liquor-ice) [tex]=\frac{12}{20} \times\frac{11}{19}= \frac{33}{95}[/tex]
P(two mint) [tex]=\frac{5}{20} \times \frac{4}{19} =\frac{1}{19}[/tex]
P(tow humbug) [tex]=\frac{3}{20} \times\frac{2}{19} =\frac{3}{190}[/tex]
Now we have:
P(two sweets not same) = 1 - P( two sweets will be same)
[tex]=1- \left(\frac{33}{95}+ \frac{1}{19}+ \frac{3}{190} \right)[/tex]
[tex]1-\frac{79}{190}[/tex]
[tex]=\frac{111}{190}[/tex]
Therefore, the probability that the two sweet will not be same type is [tex]\frac{111}{190}[/tex]