Answer:
The value of x in NLM is 13.
Step-by-step explanation:
We have a triangle NLM where,
angle M=(4x-4),
angle L=(3x+12); and
angle N=(6x+3).
We know that the sum of angles of a triangle = 180° so we will add these angles and put them equal to 180 to solve for x:
[tex](4x-4) + (3x+12)+(6x+3)=180[/tex]
[tex]4x+3x+6x+12+3-4=180[/tex]
[tex]13x=180-11[/tex]
[tex]13x=169[/tex]
[tex]x=13[/tex]
Therefore, the value of x in triangle NLM is equal to 13.