Respuesta :
The function is
y = 6 x
Differentiating w.r.t x
[tex]\frac{\mathrm{d} y}{\mathrm{d} x}[/tex]=6
As given , dx = Δx, and dy=Δy
[tex]\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\Delta y}{\Delta x}[/tex]
So,above equation becomes
[tex]\frac{\Delta y}{\Delta x}=6[/tex]
[tex]\Delta y= \Delta x \times 6[/tex]
As given , [tex]\Delta x=1[/tex]
[tex]\Delta y= 1 \times 6=6[/tex]
When x=4, y=6×4=24
So, When x+ [tex]\Delta x[/tex]=4+1=5 then, y +[tex]\Delta y[/tex]=24+6=30
The value of [tex]\Delta y[/tex] and [tex]dy[/tex] for the given value of [tex]x[/tex] and [tex]\Delta x[/tex] is [tex]\boxed6.[/tex]
Further explanation:
Given:
The value of [tex]y[/tex] is [tex]6x.[/tex]
[tex]y = 6x[/tex]
The value of [tex]x[/tex] is [tex]4.[/tex]
Explanation:
The given function can be expressed as follows,
[tex]y = 6x[/tex]
Differentiate the above equation with respect to [tex]x.[/tex]
[tex]\begin{aligned}\frac{{dy}}{{dx}}&= \frac{d}{{dx}}\left( {6x} \right)\\&= 6 \times\frac{d}{{dx}}\left( x \right)\\&= 6\times1\\&= 6\\\end{aligned}[/tex]
[tex]dx = \Delta x{\text{ and }}dy = \Delta y[/tex]
The value of [tex]\Delta y[/tex] can be obtained as follows,
[tex]\begin{aligned}\frac{{\Delta y}}{{\Delta x}} &= 6\\\Delta y &= 6 \times \Delta x \\\Delta y&= 6 \times 1\\\Delta y&= 6\\\end{aligned}[/tex]
The value of [tex]x[/tex] is [tex]4.[/tex]
Substitute [tex]4[/tex] for [tex]x[/tex] in equation [tex]y = 6x.[/tex]
[tex]\begin{aligned}y&= 6 \times 4\\&= 24\\\end{aligned}[/tex]
The value of [tex]x + \Delta x[/tex] can be obtained as follows,
[tex]\begin{aligned}x + \Delta x &= 4 + 1 \\&= 5\\\end{aligned}[/tex]
The value of [tex]y + \Delta y[/tex] can be obtained as follows,
[tex]\begin{aligned}y + \Delta y &= 24 + 6\\&= 30\\\end{aligned}[/tex]
The value of [tex]\Delta y[/tex] and [tex]dy[/tex] for the given value of [tex]x[/tex] and [tex]\Delta x[/tex] is [tex]\boxed6.[/tex]
Learn more:
1. Learn more about inverse of the functionhttps://brainly.com/question/1632445.
2. Learn more about equation of circle brainly.com/question/1506955.
3. Learn more about range and domain of the function https://brainly.com/question/3412497
Answer details:
Grade: High School
Subject: Mathematics
Chapter: Derivatives
Keywords: Derivative, value of [tex]x[/tex], function, differentiate, minimum value, dy, compute, given value of [tex]x, y=6x, x=4, x=1[/tex]