Respuesta :

The function is

y = 6 x

Differentiating w.r.t  x

[tex]\frac{\mathrm{d} y}{\mathrm{d} x}[/tex]=6

As given , dx = Δx, and dy=Δy

[tex]\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\Delta y}{\Delta x}[/tex]

So,above equation becomes

[tex]\frac{\Delta y}{\Delta x}=6[/tex]

[tex]\Delta y= \Delta x \times 6[/tex]

As given , [tex]\Delta x=1[/tex]

[tex]\Delta y= 1 \times 6=6[/tex]

When  x=4, y=6×4=24

So, When x+ [tex]\Delta x[/tex]=4+1=5 then,  y +[tex]\Delta y[/tex]=24+6=30

The value of [tex]\Delta y[/tex] and [tex]dy[/tex] for the given value of [tex]x[/tex] and [tex]\Delta x[/tex] is [tex]\boxed6.[/tex]

Further explanation:

Given:

The value of [tex]y[/tex] is [tex]6x.[/tex]

[tex]y = 6x[/tex]

The value of [tex]x[/tex] is [tex]4.[/tex]

Explanation:

The given function can be expressed as follows,

[tex]y = 6x[/tex]

Differentiate the above equation with respect to [tex]x.[/tex]

[tex]\begin{aligned}\frac{{dy}}{{dx}}&= \frac{d}{{dx}}\left( {6x} \right)\\&= 6 \times\frac{d}{{dx}}\left( x \right)\\&= 6\times1\\&= 6\\\end{aligned}[/tex]

[tex]dx = \Delta x{\text{ and }}dy = \Delta y[/tex]

The value of [tex]\Delta y[/tex] can be obtained as follows,

[tex]\begin{aligned}\frac{{\Delta y}}{{\Delta x}} &= 6\\\Delta y &= 6 \times \Delta x \\\Delta y&= 6 \times 1\\\Delta y&= 6\\\end{aligned}[/tex]

The value of [tex]x[/tex] is [tex]4.[/tex]

Substitute [tex]4[/tex] for [tex]x[/tex] in equation [tex]y = 6x.[/tex]

[tex]\begin{aligned}y&= 6 \times 4\\&= 24\\\end{aligned}[/tex]

The value of [tex]x + \Delta x[/tex] can be obtained as follows,

[tex]\begin{aligned}x + \Delta x &= 4 + 1 \\&= 5\\\end{aligned}[/tex]

The value of [tex]y + \Delta y[/tex] can be obtained as follows,

[tex]\begin{aligned}y + \Delta y &= 24 + 6\\&= 30\\\end{aligned}[/tex]

The value of [tex]\Delta y[/tex] and [tex]dy[/tex] for the given value of [tex]x[/tex] and [tex]\Delta x[/tex] is  [tex]\boxed6.[/tex]

Learn more:

1. Learn more about inverse of the functionhttps://brainly.com/question/1632445.

2. Learn more about equation of circle brainly.com/question/1506955.

3. Learn more about range and domain of the function https://brainly.com/question/3412497

Answer details:

Grade: High School

Subject: Mathematics

Chapter: Derivatives

Keywords: Derivative, value of [tex]x[/tex], function, differentiate, minimum value, dy, compute, given value of [tex]x, y=6x, x=4, x=1[/tex]