Respuesta :

Answer:

Perimeter of [tex]\triangle ABC[/tex] is [tex]48+16\sqrt{3}[/tex].

Explanation:

Given: In [tex]\triangle ABC[/tex] , [tex]\angle ACB = 90^{\circ}[/tex] , [tex]\angle ACD= 30^{\circ}[/tex]  and AD= 8cm.

In [tex]\triangle ADC[/tex]

Sum of the measure of the angles of triangles is 180 degree.

[tex]\angle CAD+\angle CDA+\angle ACD=180^{\circ}[/tex]

[tex]\angle CAD+90^{\circ}+30^{\circ}=180^{\circ}[/tex] or

[tex]\angle CAD+120^{\circ}=180^{\circ}[/tex]

Simplify:

[tex]\angle CAD=60^{\circ}[/tex]

∵ AD= 8cm and  [tex]\angleACD= 30^{\circ}[/tex] to calculate the length of CD we use tangent ratio i.e,

[tex]\tan = \frac{perpendicular}{Adjacent}[/tex]

then;

[tex]\tan 30 = \frac{8}{CD}[/tex] or

[tex]\frac{1}{\sqrt{3}} =\frac{8}{CD}[/tex]

Simplify:

[tex]CD=8\sqrt{3}[/tex] cm.

Also, find the length of AC, we use sine ratio i.e, [tex]\sin=\frac{perpendicular}{Hypotenuse}[/tex].

Then,

[tex]\sin 30 =\frac{AD}{AC}[/tex] or

[tex]\frac{1}{2} =\frac{8}{AC}[/tex]

On simplify:

[tex]AC=2\times 8 =16[/tex]cm.

Now, in triangle ABC;

[tex]\angle BAC= 60^{\circ}[/tex] , [tex]\angle ACB= 90^{\circ}[/tex] then

[tex]\angle ABC= 30^{\circ}[/tex]     [Sum of the measure of the angles in the triangle is 180 degree]

To calculate the length of BC;

[tex]\tan A = \frac{BC}{AC}[/tex]     [∴[tex]\ tan= \frac{perpendicular}{adjacent}[/tex] ]

therefore,

[tex]\tan 60 = \frac{BC}{16}[/tex]

or

[tex]\sqrt{3}= \frac{BC}{16}[/tex]

Simplify:

[tex]BC=16\sqrt{3}[/tex]cm.

Using Pythagoras theorem in triangle ACB;

Let BD be x cm

AB = 8+x cm ,  AC = 16 cm and [tex]BC=16\sqrt{3}[/tex] cm

[tex]AB^2=AC^2+BC^2[/tex]

[tex](8+x)^2=(16)^2+(16\sqrt{3} )^2[/tex] or

[tex](8+x)^2=256+768=1024[/tex] or

[tex]8+x=\sqrt{1024} =32[/tex]

Simplify:

x=24 cm

Therefore, the length of AB = 8+x= 8+24=32 cm

Perimeter(P) of triangle ABC is equal to the sum of the sides of the triangle.

⇒ P= AB+BC+AC = [tex]32+16\sqrt{3} +16=48+16\sqrt{3}[/tex] cm




Ver imagen OrethaWilkison