Respuesta :

ANSWER TO QUESTION 1

[tex](1.7\times 10^4)\times(8.5\times 10^{-2})[/tex]


We rewrite to obtain;


[tex](1.7\times 10^4)\times(8.5\times 10^{-2})=(1.7\times 8.5)\times(10^4\times 10^{-2})[/tex]


Recall this product law of indices


[tex]a^m\times a^n=a^{m+n}[/tex]


we apply this law to obtain,


[tex](1.7\times 10^4)\times(8.5\times 10^{-2})=14.45\times10^{4+-2}[/tex]



This simplifies to


[tex](1.7\times 10^4)\times(8.5\times 10^{-2})=14.45\times10^{2}[/tex]


We need to rewrite this in standard form;


[tex](1.7\times 10^4)\times(8.5\times 10^{-2})=1.445\times 10^1\times10^{2}[/tex]


We apply the product law again to get


[tex](1.7\times 10^4)\times(8.5\times 10^{-2})=1.445\times 10^{1+2}[/tex]


This simplifies to

[tex](1.7\times 10^4)\times(8.5\times 10^{-2})=1.445\times 10^{3}[/tex]



ANSWER TO QUESTION 2


[tex](6.8\times 10^2)\times(1.3\times 10^{-3})[/tex]


We rewrite to obtain;


[tex](6.8\times 10^2)\times(1.3\times 10^-3)=(6.8\times 1.3)\times(10^2\times 10^{-3})[/tex]


Recall this product law of indices


[tex]a^m\times a^n=a^{m+n}[/tex]


we apply this law to obtain,


[tex](6.8\times 10^2)\times(1.3\times 10^-3)=8.84\times10^{2+-3}[/tex]



This simplifies to


[tex](6.8\times 10^2)\times(1.3\times 10^-3)=8.84\times10^{-1}[/tex]


This is already in standard form.