Respuesta :

[tex]x^{2} + (y-3)^{2} =18[/tex]

Move all variables to the left side and all constants to the right side.

This is the form of a circle. Use this form to determine the center and radius of the circle.

[tex](x-h)^{2}+ (y-k)^{2}= r^{2}[/tex]

Match the values in this circle to those of the standard form. The variable  [tex]r[/tex]  represents the radius of the circle,  [tex]h[/tex] represents the x-offset from the origin, and  [tex]k[/tex] represents the y-offset from origin.

[tex]r[/tex]= [tex]3\sqrt{2}[/tex]

[tex]h[/tex]= 0

[tex]k[/tex]  = 3

The center of the circle is found at  ( h , k )

Center:  ( 0,3)

These values represent the important values for graphing and analyzing a circle.

Center:  ( 0 , 3)

Radius:  [tex]3\sqrt{2}[/tex]