bearing in mind that perpendicular lines have negative reciprocal slopes, so
[tex]\bf \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}~\hspace{10em}\stackrel{slope}{y=\stackrel{\downarrow }{-\cfrac{1}{3}}x-1} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\bf \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{-\cfrac{1}{3}}\qquad \qquad \qquad \stackrel{reciprocal}{-\cfrac{3}{1}}\qquad \stackrel{negative~reciprocal}{+\cfrac{3}{1}\implies 3}}[/tex]
so we're really looking for a line whose slope is 3 and runs through (1,5)
[tex]\bf (\stackrel{x_1}{1}~,~\stackrel{y_1}{5})~\hspace{10em} slope = m\implies 3 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-5=3(x-1) \\\\\\ y-5=3x-3\implies y=3x+2[/tex]