Respuesta :
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points A(-5, 3) and B(3, -3). Substitute:
[tex]m=d\frac{-3-3}{3-(-5)}=\dfrac{-6}{8}=-\dfrac{3}{4}[/tex]
Answer: D) - 3/4
Using the slope formula, [tex]\mathbf{m = \frac{y_2 - y_1}{x_2 - x_1}}[/tex], the slope of the given line segment AB with endpoints A(-5, 3) and B(3, -3) is: [tex]\mathbf{D.-\frac{3}{4} }[/tex]
Using the slope formula, [tex]\mathbf{m = \frac{y_2 - y_1}{x_2 - x_1}}[/tex], we can find the slope of the line segment AB.
- Given the endpoints of segment AB:
A(-5, 3)
B(3, -3)
- Let,
[tex]A(-5, 3) = (x_1, y_1)\\\\B(3, -3) = (x_2, y_2)[/tex]
- Substitute each value into the slope formula to solve for m
[tex]m = \frac{-3 -3}{3 -(-5)} = \frac{-6}{8}[/tex]
- Simplify further
[tex]\mathbf{m =-\frac{3}{4} }[/tex]
Therefore, using the slope formula, [tex]\mathbf{m = \frac{y_2 - y_1}{x_2 - x_1}}[/tex], the slope of the given line segment AB with endpoints A(-5, 3) and B(3, -3) is: [tex]\mathbf{D.-\frac{3}{4} }[/tex]
Learn more here:
https://brainly.com/question/9462301