Respuesta :
Answer: Option C. 6.4
Solution
1) Find the mean
Mean: M=(32+26+43+38+46)/5
M=(185)/5
M=37
2) Find the distance between each data value and the mean:
d1=Absolute value (Value 1 - Mean)
d1=Absolute value (32-37)
d1=Absolute value (-5)
d1=5
d2=Absolute value (Value 2 - Mean)
d2=Absolute value (26-37)
d2=Absolute value (-11)
d2=11
d3=Absolute value (Value 3 - Mean)
d3=Absolute value (43-37)
d3=Absolute value (6)
d3=6
d4=Absolute value (Value 4 - Mean)
d4=Absolute value (38-37)
d4=Absolute value (1)
d4=1
d5=Absolute value (Value 5 - Mean)
d5=Absolute value (46-37)
d5=Absolute value (9)
d5=9
3) Mean absolute deviation (MAD) is the average distance:
MAD=(d1+d2+d3+d4+d5)/5
MAD=(5+11+6+1+9)/5
MAD=(32)/5
MAD=6.4
Answer:
The correct answer option is C. 6.4
Step-by-step explanation:
First of all we need to find the mean of the given data set.
Mean = [tex]\frac{32+26+43+38+46}{5}[/tex]
Mean = [tex]\frac{185}{5}[/tex]
Mean [tex]= 37[/tex]
To find the absolute mean deviation, we will use the following formula:
Mean Deviation = ∑ | x - μ | / N
To find ∑ | x - μ |, we will find the difference of each value from the mean.
|32-37| = 5
|26-37| = 11
|43-37| = 6
|38-37| = 1
|46-37| = 9
∑ | x - μ | = 5 + 11 + 6 + 1 + 9 = 32
∑ | x - μ | / N = 32 / 5 = 6.4
Therefore, the absolute mean deviation for this data set is 6.4.