Respuesta :
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points (4, -4) and (k, -1) and the slope m = 34.
Substitute:
[tex]\dfrac{-1-(-4)}{k-4}=34\\\\\dfrac{3}{k-4}=\dfrac{34}{1}\qquad|\text{cross multiply}\\\\34(k-4)=3\qquad|\text{use distributive property}\\\\34k-136=3\qquad|+136\\\\34k=139\qquad|:34\\\\k=\dfrac{139}{34}[/tex]
Using the equation of slope of a straight line, the value of k is 4.09.
Given the following points:
- Points on the x-axis = (4, k)
- Points on the y-axis = (-4, -1)
- Slope = 34.
To find the value of k, we would use the equation of slope of a straight line:
[tex]Slope. \;m = \frac{Change \; in \; y \;axis}{Change \; in \; x \;axis} \\\\Slope. \;m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Substituting the points and slope into the formula, we have;
[tex]34 = \frac{-1\; - \;[-4]}{k \;-\;4}\\\\34 = \frac{-1\; + \;4}{k \;-\;4}\\\\34 = \frac{3}{k \;-\;4}[/tex]
Cross-multiplying, we have:
[tex]34(k\; - \;4) = 3\\\\34k - 136 = 3\\\\34k = 136 + 3\\\\34k = 139\\\\k = \frac{139}{34}[/tex]
k = 4.09
Therefore, the value of k is 4.09.
Read more: https://brainly.com/question/18123312