1. What is the frequency in hertz of a photon that has a wavelength of 5.78 x 104 m? 2. Calculate the wavelength of a wave that has a frequency of 22.4 MHz.
3. What is the frequency in hertz of a photon that has a wavelength of 67.9 m?
4. Calculate the wavelength of a wave that has a frequency of 34.66 Hz.
5. What is the frequency in hertz of a photon that has a wavelength of 9.98 mm?

Respuesta :

Answer :

Solution For 1 :

Given,

wavelength = [tex]5.78\times 10^4m[/tex]

Speed of light = [tex]2.998\times 10^{8}m/s[/tex]

Formula used :

[tex]\nu=\frac{c}{\lambda}[/tex]           .............(1)

[tex]\nu[/tex] = frequency

[tex]\lambda[/tex] = wavelength

c = speed of light

Now put all the given values in above formula, we get

[tex]\nu=\frac{2.998\times 10^8m/s}{5.78\times 10^{4}m}=0.5185\times 10^{4}s^-=5.185\times 10^{3}s^-[/tex] = [tex]5.185\times 10^{3}Hz[/tex]  

(1Hz = 1 per second)

Therefore, the frequency of a photon in hertz is [tex]5.185\times 10^{3}Hz[/tex].

Solution For 2 :

Given,

Frequency = [tex]22.4MHz=22.4\times 10^6Hz[/tex]       [tex](1MHz=10^6Hz)[/tex]

Speed of light = [tex]2.998\times 10^{8}m/s[/tex]

Now put all the given values in above formula (1), we get

[tex]\lambda=\frac{2.998\times 10^8m/s}{22.4\times 10^{6}s^-}=0.1338\times 10^{2}m=13.38m[/tex]

Therefore, the wavelength of a wave is 13.38 m.

Solution For 3 :

Given,

wavelength = [tex]67.9m[/tex]

Speed of light = [tex]2.998\times 10^{8}m/s[/tex]

Now put all the given values in above formula (1), we get

[tex]\nu=\frac{2.998\times 10^8m/s}{67.9m}=0.04415\times 10^{8}s^-=4.415\times 10^{6}s^-[/tex] = [tex]4.415\times 10^{6}Hz[/tex]

Therefore, the frequency of a photon in hertz is [tex]4.415\times 10^{6}Hz[/tex].

Solution For 4 :

Given,

Frequency = [tex]34.66Hz[/tex]

Speed of light = [tex]2.998\times 10^{8}m/s[/tex]

Now put all the given values in above formula (1), we get

[tex]\lambda=\frac{2.998\times 10^8m/s}{34.66s^-}=0.08649\times 10^{8}m=86.49\times 10^5m[/tex]          

Therefore, the wavelength of a wave is [tex]86.49\times 10^5m[/tex].

Solution For 5 :

Given,

wavelength = [tex]9.98mm=9.98\times 10^{-3}m[/tex]      (1 m  = 1000 mm)

Speed of light = [tex]2.998\times 10^{8}m/s[/tex]

Now put all the given values in above formula (1), we get

[tex]\nu=\frac{2.998\times 10^8m/s}{9.98\times 10^{-3}m}=0.3004\times 10^{11}s^-=3.004\times 10^{10}s^-[/tex] = [tex]3.004\times 10^{10}Hz[/tex]

Therefore, the frequency of a photon in hertz is [tex]5.185\times 10^{3}Hz[/tex].