calculate the slopes of the lines using the gradient formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
(x₁, y₁ ) = A(- 4, - 1) and (x₂, y₂ ) = B(-1, 2 )
[tex]m_{AB}[/tex] = [tex]\frac{2+1}{-1+4}[/tex] = [tex]\frac{3}{3}[/tex] = 1
(x₁, y₁ ) = B(-1, 2) and (x₂, y₂ ) = (5, 1)
[tex]m_{BC}[/tex] = [tex]\frac{x1-2}{5+1}[/tex] = - [tex]\frac{1}{6}[/tex]
(x₁, y₁) = C(5, 1 ) and (x₂, y₂ ) = D(1, - 3)
[tex]m_{CD}[/tex] = [tex]\frac{-3-1}{1-5}[/tex] = [tex]\frac{-4}{-4}[/tex] = 1
(x₁, y₁) = A(- 4, - 1) and (x₂, y₂) = D(1, - 3 )
[tex]m_{AD}[/tex] = [tex]\frac{-3+1}{1+4}[/tex] = - [tex]\frac{2}{5}[/tex]
Quadrilateral ABCD is not a parallelogram since only one pair of opposite sides is parallel , that is AB and CD