Triangle TRE has vertices T(3,6), R(-3,10), and E(-9,4). Find the coordinates of point M if line TM is a median of triangle TRE

Respuesta :

Answer:

The coordinate of point M = (-6,7)

Explanation:

The Median of a triangle is a line segment from a vertex to the midpoint of the opposite side of a triangle.

Given: [tex]\triangle TRE[/tex] has vertices T(3,6) , R(-3,10) and E(-9,4).

Here, line TM is a median of triangle TRE where M is the midpoint of RE.

The midpoint of  M of the line segment from R(-3,10)  to E(-9,4) is;

M = [tex](\frac{-3+(-9)}{2}, \frac{10+4}{2}) = ( \frac{-12}{2}, \frac{14}{2} )=(-6,7)[/tex]

Therefore, the coordinate of point M is, (-6,7).