Respuesta :
ANSWER TO QUESTION 1
[tex]y=2x+24[/tex]
EXPLANATION
Method 1: Finding the equation given any 2 points
We choose any two of the ordered pairs from the first table, say
[tex](-2,20)[/tex]
and
[tex](-3,18)[/tex]
We determine the slope using the formula;
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
Let [tex](x_1,y_1)[/tex] be [tex](-2,20)[/tex]
and
[tex](x_2,y_2)[/tex] be [tex](-3,18)[/tex]
Then,
[tex]Slope=\frac{18-20}{-3--2}[/tex]
[tex]\Rightarrow Slope=\frac{18-20}{-3+2}[/tex]
[tex]\Rightarrow Slope=\frac{-2}{-1}[/tex]
[tex]\Rightarrow Slope=2[/tex]
We now use the formula,
[tex]y-y_1=m(x-x_1)[/tex] to find the equation of this line.
That is ;
[tex]y-20=2(x--2)[/tex]
[tex]y-20=2(x+2)[/tex]
[tex]y=2x+4+20[/tex]
[tex]y=2x+24[/tex]
ANSWER TO QUESTION 2
Method 2: Using Simultaneous equations
We use the slope intercept form for the second table
[tex]y=mx+b[/tex]
The point
[tex](-6,15)[/tex] must satisfy this line.
[tex]15=-6m+b--(1)[/tex]
The point
[tex](-8,12)[/tex] must also satisfy this line.
[tex]12=-8m+b--(2)[/tex]
Equation (1) minus Equation (2) gives
[tex]2m=3[/tex]
[tex]\Rightarrow m=\frac{3}{2}[/tex]
We substitute [tex]m=\frac{3}{2}[/tex] in to equation (1)
and solve for b.
[tex]\Rightarrow 15=-6\times \frac{3}{2}+b[/tex]
[tex]\Rightarrow 15=-9+b[/tex]
[tex]\Rightarrow 15+9=b[/tex]
[tex]\Rightarrow 24=b[/tex]
Solving simultaneously gives
[tex]b=24[/tex] and [tex]m=\frac{3}{2}[/tex]
Hence the equation is
[tex]y=\frac{3}{2}x+24[/tex]
Answers:
1) First table: y=2x+24
2) Second table: y=(3/2)x+24
Solution:
m=(y2-y1)/(x2-x1)
y-y1=m(x-x1)
1) First table. Taking the first two points of the table:
P1=(-6,12)=(x1,y1)→x1=-6, y1=12
P2=(-5,14)=(x2,y2)→x2=-5, y2=14
m=(y2-y1)/(x2-x1)
m=(14-12)/(-5-(-6))
m=(2)/(-5+6)
m=(2)/(1)
m=2
y-y1=m(x-x1)
y-12=2(x-(-6))
y-12=2(x+6)
y-12=2x+2(6)
y-12=2x+12
y-12+12=2x+12+12
y=2x+24
2) Second table. Taking the first two points of the table:
P1=(-14,3)=(x1,y1)→x1=-14, y1=3
P2=(-12,6)=(x2,y2)→x2=-12, y2=6
m=(y2-y1)/(x2-x1)
m=(6-3)/(-12-(-14))
m=(3)/(-12+14)
m=(3)/(2)
m=3/2
y-y1=m(x-x1)
y-3=(3/2)(x-(-14))
y-3=(3/2)(x+14)
y-3=(3/2)x+(3/2)(14)
y-3=(3/2)x+(3)(14)/2
y-3=(3/2)x+42/2
y-3=(3/2)x+21
y-3+3=(3/2)x+21+3
y=(3/2)x+24