Write a linear equation for the tables shown. y = mx + b y =__ x +____

x y x y
-6 12 -14 3
-5 14 -12 6
-4 16 -10 9
-3 18 - 8 12
-2 20 - 6 15

Respuesta :

ANSWER TO QUESTION 1


[tex]y=2x+24[/tex]



EXPLANATION

Method 1: Finding the equation given any 2 points

We  choose any two of the ordered pairs from the first table, say

[tex](-2,20)[/tex]


and


[tex](-3,18)[/tex]


We determine the slope using the formula;


[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]


Let [tex](x_1,y_1)[/tex] be [tex](-2,20)[/tex]


and

[tex](x_2,y_2)[/tex] be [tex](-3,18)[/tex]


Then,


[tex]Slope=\frac{18-20}{-3--2}[/tex]



[tex]\Rightarrow Slope=\frac{18-20}{-3+2}[/tex]


[tex]\Rightarrow Slope=\frac{-2}{-1}[/tex]


[tex]\Rightarrow Slope=2[/tex]


We now use  the formula,


[tex]y-y_1=m(x-x_1)[/tex] to find the equation of this line.


That is ;

[tex]y-20=2(x--2)[/tex]


[tex]y-20=2(x+2)[/tex]


[tex]y=2x+4+20[/tex]


[tex]y=2x+24[/tex]

ANSWER TO QUESTION 2

Method 2: Using Simultaneous equations


We use the slope intercept form  for the second table

[tex]y=mx+b[/tex]

The point

[tex](-6,15)[/tex] must satisfy this line.


[tex]15=-6m+b--(1)[/tex]


The point

[tex](-8,12)[/tex] must also satisfy this line.


[tex]12=-8m+b--(2)[/tex]


Equation (1)  minus Equation (2) gives

[tex]2m=3[/tex]


[tex]\Rightarrow m=\frac{3}{2}[/tex]


We substitute [tex]m=\frac{3}{2}[/tex] in to equation (1)

and solve for b.

[tex]\Rightarrow 15=-6\times \frac{3}{2}+b[/tex]


[tex]\Rightarrow 15=-9+b[/tex]


[tex]\Rightarrow 15+9=b[/tex]


[tex]\Rightarrow 24=b[/tex]



Solving simultaneously gives

[tex]b=24[/tex] and [tex]m=\frac{3}{2}[/tex]


Hence the equation is

[tex]y=\frac{3}{2}x+24[/tex]









Answers:

1) First table: y=2x+24

2) Second table: y=(3/2)x+24

Solution:

m=(y2-y1)/(x2-x1)

y-y1=m(x-x1)

1) First table. Taking the first two points of the table:

P1=(-6,12)=(x1,y1)→x1=-6, y1=12

P2=(-5,14)=(x2,y2)→x2=-5, y2=14

m=(y2-y1)/(x2-x1)

m=(14-12)/(-5-(-6))

m=(2)/(-5+6)

m=(2)/(1)

m=2

y-y1=m(x-x1)

y-12=2(x-(-6))

y-12=2(x+6)

y-12=2x+2(6)

y-12=2x+12

y-12+12=2x+12+12

y=2x+24

2) Second table. Taking the first two points of the table:

P1=(-14,3)=(x1,y1)→x1=-14, y1=3

P2=(-12,6)=(x2,y2)→x2=-12, y2=6

m=(y2-y1)/(x2-x1)

m=(6-3)/(-12-(-14))

m=(3)/(-12+14)

m=(3)/(2)

m=3/2

y-y1=m(x-x1)

y-3=(3/2)(x-(-14))

y-3=(3/2)(x+14)

y-3=(3/2)x+(3/2)(14)

y-3=(3/2)x+(3)(14)/2

y-3=(3/2)x+42/2

y-3=(3/2)x+21

y-3+3=(3/2)x+21+3

y=(3/2)x+24

ACCESS MORE
EDU ACCESS
Universidad de Mexico