Respuesta :

Given [tex]6^4 = 1,296[/tex]

To write in logarithmic form we convert exponential form to logarithmic form

We apply the following rule

[tex]b^x = a[/tex] can be written as [tex]log_b(a) = x[/tex]

here b = 6 , x=4 and a = 1296

[tex]6^4 = 1,296[/tex] can be written as [tex]log_6(1,296) = 4[/tex]

option A is correct


Answer:

[tex]a)log_{6}1,296=4[/tex]

Step-by-step explanation:

1. First take the given equation and name its terms:

[tex]6^{4}=1,296[/tex]

[tex]6:base[/tex]

[tex]4:exponent[/tex]

[tex]1,296:argument[/tex]

2. Then write the general expression to write an exponential equation in logarithmic form:

[tex]log_{(base)}(argument)=exponent[/tex]

3. Finally replace the values in the expression to obtain the logarithmic form:

[tex]log_{(base)}(argument)=exponent[/tex]

[tex]log_{6}1,296=4[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico