Answer : The electrode potential at pH = 14 is -0.216 V.
Solution : Given,
[tex]E^o_{Ni^{2+}/Ni}[/tex] = +0.25 V
[tex]K_{sp}=[Ni^{2+}][OH^-]^2=1.5\times 10^{-16}[/tex]
pH = 14
As we know,
[tex]pH=-log[H^+]=14[/tex]
[tex][H^+]=10^{-14}[/tex]
The Solubility product of water is,
[tex]K_w=[H^+][OH^-]=10^{-14}[/tex]
[tex][OH^-]=\frac{K_w}{[H^+]}=\frac{10^{-14}}{10^{-14}}=1[/tex]
The reaction is ,
[tex]Ni(OH)_2\rightarrow Ni^{2+}+2OH^-[/tex]
The solubility product expression is,
[tex]K_{sp}=[Ni^{2+}][OH^-]^2[/tex]
Now put the given values in this expression, we get the [tex][Ni^{2+}][/tex] ion.
[tex]1.5\times 10^{-16}=[Ni^{2+}](1)^2[/tex]
[tex][Ni^{2+}]=1.5\times 10^{-16}[/tex]
The cell reaction is,
[tex]Ni^{2+}+2e^-\rightarrow Ni[/tex]
Using Nernst equation, [tex]E=E^o-\frac{0.059}{n}logQ[/tex]
where,
E = electrode potential of the cell
[tex]E^o[/tex] = standard electrode potential of the cell
n = number of electrons in the cell reaction
Q = reaction quotient
The value of 'n' = 2 (from the cell reaction)
[tex]E=E^o_{Ni^{2+}/Ni}-\frac{0.059}{n}log\frac{1}{[Ni^{2+}]}[/tex]
Now put the given values in this formula, we get
[tex]E=+0.25V-\frac{0.059}{2}log\frac{1}{[1.5\times 10^{-16}]}[/tex]
E = - 0.216 V
Therefore, the electrode potential at pH = 14 is -0.216 V.