Answer:
Step-by-step explanation:
Step One
Find the perpendicular to the line with a given slope of - 1
m1 * m2 = - 1 Let the given line have a slope of - 1. Call it m1
-1 * m2 = - 1 Divide both sides by -1
-1/-1 * m2 = -1/-1
m2 = 1
Step Two
Write what you have so far
y = 1 * x + b
y = x + b
Step Two
Solve the general equation for (2,-2)
y = x + b
x = 2
y = -2
-2 = 2 + b Subtract 2 from both sides
-2 - 2 = b switch and add
b= - 4
Answer
y = x -4
[tex]\text{Let}\\k:y=m_1x+b_1\ \text{and}\ l:y=m_2x+b_2.\\\\l\ \perp k\iff m_1m_2=-1\\--------------------\\\text{We have}\\k:y=-1x+b_1\to m_1=-1\\l:y=m_2x+b_2\\\\l\ \perp\ k\iff-1m_2=-1\quad|:(-1)\to m_2=1\\\\\text{Therefore}\ l:y=1x+b_2\to y=x+b_2\\\\\text{We know, the line}\ l\ \text{contains point (2, -2).}}\\\\\text{Substitute the coordinates to the equation of the line}\ l:\\\\-2=2+b_2\qquad|-2\\\\-4=b_2\to b_2=-4\\\\Answer:\ y=x-4[/tex]