Respuesta :

Answer: IV, positive, [tex]\frac{\pi} {6}[/tex], - sec [tex]\frac{\pi} {6}[/tex], [tex]\frac{2\sqrt{3}}{3} [/tex]

Step-by-step explanation:

a) Look at the Unit Circle to see that [tex]\frac{11\pi} {6}[/tex] = 330°, which is located in Quadrant IV.

b) The coordinate (cos θ, sin θ) for [tex]\frac{11\pi} {6}[/tex] is: [tex](\frac{\sqrt{3}} {2},\frac{-1}{2})[/tex]

sec = [tex]\frac{1}{cos}[/tex] = [tex]\frac{2}{\sqrt{3}} [/tex] which is positive

c) Since the given angle is in Quadrant IV, which is closest to the x-axis at 360° = 2π, the reference angle can be found by subtracting the given angle [tex]\frac{11\pi} {6}[/tex] from 2π: [tex]\frac{12\pi} {6}[/tex] - [tex]\frac{11\pi} {6}[/tex] = [tex]\frac{\pi} {6}[/tex]

d) the reference angle is below the x-axis so the given angle is equal to the negative of the reference angle: - sec [tex]\frac{\pi} {6}[/tex].

e) sec [tex]\frac{11\pi} {6}[/tex] = [tex]\frac{2}{\sqrt{3}} [/tex] = [tex]\frac{2}{\sqrt{3}}*\frac{\sqrt{3}}{\sqrt{3}}[/tex] = [tex]\frac{2\sqrt{3}}{3} [/tex]

***************************************************************************************

Answer: [tex]\frac{18\pi}{11}[/tex], IV, [tex]\frac{4\pi} {11}[/tex]

Step-by-step explanation:

2π is one rotation.  2π = [tex]\frac{22\pi}{11}[/tex]

[tex]\frac{-26\pi}{11}[/tex] + [tex]\frac{22\pi}{11}[/tex] = [tex]\frac{-4\pi}{11}[/tex]

[tex]\frac{-4\pi}{11}[/tex] + [tex]\frac{22\pi}{11}[/tex] = [tex]\frac{18\pi}{11}[/tex]

Convert the radians into degrees to see which Quadrant it is in by setting up the proportion and cross multiplying:

[tex]\frac{\pi}{180}[/tex]= [tex]\frac{18\pi}{11x}[/tex]

π(11x) = (180)18π

x = [tex]\frac{180(18\pi}{11\pi}[/tex]

x = 295°     which lies in Quadrant IV

Since the given angle is in Quadrant IV, which is closest to the x-axis at 360° = 2π, the reference angle can be found by subtracting the angle of least nonegative value[tex]\frac{18\pi} {11}[/tex] from 2π: [tex]\frac{22\pi} {11}[/tex] - [tex]\frac{18\pi} {11}[/tex] = [tex]\frac{4\pi} {11}[/tex]

***************************************************************************************

Answer: [tex]\frac{5\pi}{3}[/tex], IV, [tex]\frac{4\pi} {11}[/tex], [tex]\frac{\pi} {3}[/tex]

Step-by-step explanation:

2π is one rotation.  2π = [tex]\frac{6\pi}{3}[/tex]

[tex]\frac{-13\pi}{3}[/tex] + [tex]\frac{6\pi}{3}[/tex] = [tex]\frac{-7\pi}{3}[/tex]

[tex]\frac{-7\pi}{3}[/tex] + [tex]\frac{6\pi}{3}[/tex] = [tex]\frac{-\pi}{3}[/tex]

[tex]\frac{-\pi}{3}[/tex] + [tex]\frac{6\pi}{3}[/tex] = [tex]\frac{5\pi}{3}[/tex]

This is on the Unit Circle at 300°, which is located in Quadrant IV

Since the given angle is in Quadrant IV, which is closest to the x-axis at 360° = 2π, the reference angle can be found by subtracting the angle of least nonegative value[tex]\frac{5\pi} {3}[/tex] from 2π: [tex]\frac{6\pi} {3}[/tex] - [tex]\frac{5\pi} {3}[/tex] = [tex]\frac{\pi} {3}[/tex]


ACCESS MORE
EDU ACCESS