An arched drainage culvert can be modelled by the function:

y=(x(191-x))/60

If water fills the culvert to a height of 136.5 mm, use the quadratic formula to calculate how wide the air space is directly above the water level.

Respuesta :

Substitute 136.5 for y.

[tex]136.5=\frac{x(191-x)}{60}[/tex]

[tex]8190=x(191-x)[/tex]

[tex]8190=191x-x^{2}[/tex]

[tex]x^{2} -191x+8190=0[/tex]

Compare this equation with [tex]ax^{2} +bx+c=0[/tex]

a = 1, b = - 191, c = 8190

[tex]x=\frac{-b+\sqrt{b^{2}-4ac } }{2}[/tex] or

[tex]x=\frac{-b-\sqrt{b^{2}-4ac } }{2}[/tex]

[tex]x=\frac{191+\sqrt{191^{2}-4(1)(8190) } }{2}[/tex] or

[tex]x=\frac{191-\sqrt{191^{2}-4(1)(8190) } }{2}[/tex]

[tex]x=\frac{191+\sqrt{36481-32760 } }{2}[/tex] or

[tex]x=\frac{191-\sqrt{36481-32760 } }{2}[/tex]

[tex]x=\frac{191+\sqrt{3721 } }{2}[/tex] or

[tex]x=\frac{191-\sqrt{3721 } }{2}[/tex]

[tex]x=\frac{191+61}{2}[/tex] or

[tex]x=\frac{191-61}{2}[/tex]

[tex]x=\frac{252}{2}[/tex] or

[tex]x=\frac{130}{2}[/tex]

x = 126 or x = 65

Hence, the points on the curve are (65, 136.5) and (126, 136.5).

The width of the air space is the distance between these points.

Width = [tex]\sqrt{(x_{2}- x_{1})^{2} +( y_{2}- y_{1}) ^{2}[/tex]

= [tex]\sqrt{(126- 65)^{2} +(136.5-136.5) ^{2}[/tex]

= 126 - 65

= 61

Hence, width of the air space is 61m.



RELAXING NOICE
Relax