Substitute 136.5 for y.
[tex]136.5=\frac{x(191-x)}{60}[/tex]
[tex]8190=x(191-x)[/tex]
[tex]8190=191x-x^{2}[/tex]
[tex]x^{2} -191x+8190=0[/tex]
Compare this equation with [tex]ax^{2} +bx+c=0[/tex]
a = 1, b = - 191, c = 8190
[tex]x=\frac{-b+\sqrt{b^{2}-4ac } }{2}[/tex] or
[tex]x=\frac{-b-\sqrt{b^{2}-4ac } }{2}[/tex]
[tex]x=\frac{191+\sqrt{191^{2}-4(1)(8190) } }{2}[/tex] or
[tex]x=\frac{191-\sqrt{191^{2}-4(1)(8190) } }{2}[/tex]
[tex]x=\frac{191+\sqrt{36481-32760 } }{2}[/tex] or
[tex]x=\frac{191-\sqrt{36481-32760 } }{2}[/tex]
[tex]x=\frac{191+\sqrt{3721 } }{2}[/tex] or
[tex]x=\frac{191-\sqrt{3721 } }{2}[/tex]
[tex]x=\frac{191+61}{2}[/tex] or
[tex]x=\frac{191-61}{2}[/tex]
[tex]x=\frac{252}{2}[/tex] or
[tex]x=\frac{130}{2}[/tex]
x = 126 or x = 65
Hence, the points on the curve are (65, 136.5) and (126, 136.5).
The width of the air space is the distance between these points.
Width = [tex]\sqrt{(x_{2}- x_{1})^{2} +( y_{2}- y_{1}) ^{2}[/tex]
= [tex]\sqrt{(126- 65)^{2} +(136.5-136.5) ^{2}[/tex]
= 126 - 65
= 61
Hence, width of the air space is 61m.