Respuesta :

Answer:

The intensity becomes one fourth when the distance is doubled.

Step-by-step explanation:

The statement is

Intensity of light [tex]l[/tex] varies inversly as the square of the distance [tex]d[/tex]

So we get

[tex]l=\frac{k}{d^2}[/tex]

Now for distance 12in let the intensity be [tex]l_{1}[/tex]

So we get

[tex]l_{1}=\frac{k}{12^2}[/tex]

[tex]l_{1}=\frac{k}{144}[/tex]    ...(1)

For distance 24in, let the intensity be [tex]l_{2}[/tex]

We get

[tex]l_{2}=\frac{k}{24^2}[/tex]

[tex]l_{2}=\frac{k}{576}[/tex]       ....(2)

Dividing (1) by (2) we get

[tex]\frac{l_{1}}{l_{2}}=\frac{ \frac{k}{144}}{ \frac{k}{576}}=\frac{576}{144}[/tex]

[tex]\frac{l_{1}}{l_{2}}=4[/tex]

[tex]l_{1}=4l_{2} \ or \ l_{2} = \frac{1}{4}l_{1}[/tex]

Hence the intensity becomes one fourth

RELAXING NOICE
Relax