use quadratic formula if you had ax^2+bx+c=0, then x=[tex] \frac{-b+/- \sqrt{b^{2}-4ac} }{2a} [/tex] a=1 b=? c=34 subsitute [tex] \frac{-b+/- \sqrt{b^{2}-4(1)(34)} }{2(1)} [/tex]=5+/-3i [tex] \frac{-b+/- \sqrt{b^{2}-136} }{2} [/tex]=5+/-3i make 5+/-3 into fraction over 2,(10+/-6i)/2 [tex] \frac{-b+/- \sqrt{b^{2}-136} }{2} [/tex]=(10+/-6i)/2 multiply both sides by 2 [tex]-b+/- \sqrt{b^{2}-136} [/tex]=10+/-6i we conclude that -b=10 b=-10