We are given two relations
(a)
Relation (R)
[tex]R=[((k-8.3+2.4k),-5),(-\frac{3}{4}k,4)][/tex]
We know that
any relation can not be function when their inputs are same
so, we can set both x-values equal
and then we can solve for k
[tex]k-8.3+2.4k=-\frac{3}{4} k[/tex]
[tex]3.4k-8.3=-\frac{3}{4}k[/tex]
[tex]3.4k\cdot \:10-8.3\cdot \:10=-\frac{3}{4}k\cdot \:10[/tex]
[tex]4k-83=-\frac{15}{2}k[/tex]
[tex]34k=-\frac{15}{2}k+83[/tex]
[tex]\frac{83}{2}k=83[/tex]
[tex]83k=166[/tex]
[tex]k=2[/tex]............Answer
(b)
S = {(2−|k+1| , 4), (−6, 7)}
We know that
any relation can not be function when their inputs are same
so, we can set both x-values equal
and then we can solve for k
[tex]2-|k+1|=-6[/tex]
[tex]2-\left|k+1\right|-2=-6-2[/tex]
[tex]-\left|k+1\right|=-8[/tex]
[tex]\left|k+1\right|=8[/tex]
Since, this is absolute function
so, we can break it into two parts
[tex]|f\left(k\right)|=a\quad \Rightarrow \:f\left(k\right)=-a\quad \mathrm{or}\quad \:f\left(k\right)=a[/tex]
[tex]k+1=-8\quad \quad \mathrm{or}\quad \:\quad \:k+1=8[/tex]
we get
[tex]k+1=-8\quad[/tex]
[tex]k=-9[/tex]
[tex]k+1=8\quad[/tex]
[tex]k=7[/tex]
so,
[tex]k=-9\quad \mathrm{or}\quad \:k=7[/tex]...............Answer