For what value(s) of k will the relation not be a function
R={(k-8.3+2.4k,-5),(-(3)/(4)k,4)}
S = {(2−|k+1| , 4), (−6, 7)}
I WILL RATE AND PUT BRAINILEST ANSWER

Respuesta :

We are given two relations

(a)

Relation (R)

[tex]R=[((k-8.3+2.4k),-5),(-\frac{3}{4}k,4)][/tex]

We know that

any relation can not be function when their inputs are same

so, we can set both x-values equal

and then we can solve for k

[tex]k-8.3+2.4k=-\frac{3}{4} k[/tex]

[tex]3.4k-8.3=-\frac{3}{4}k[/tex]

[tex]3.4k\cdot \:10-8.3\cdot \:10=-\frac{3}{4}k\cdot \:10[/tex]

[tex]4k-83=-\frac{15}{2}k[/tex]

[tex]34k=-\frac{15}{2}k+83[/tex]

[tex]\frac{83}{2}k=83[/tex]

[tex]83k=166[/tex]

[tex]k=2[/tex]............Answer

(b)

S = {(2−|k+1| , 4), (−6, 7)}

We know that

any relation can not be function when their inputs are same

so, we can set both x-values equal

and then we can solve for k

[tex]2-|k+1|=-6[/tex]

[tex]2-\left|k+1\right|-2=-6-2[/tex]

[tex]-\left|k+1\right|=-8[/tex]

[tex]\left|k+1\right|=8[/tex]

Since, this is absolute function

so, we can break it into two parts

[tex]|f\left(k\right)|=a\quad \Rightarrow \:f\left(k\right)=-a\quad \mathrm{or}\quad \:f\left(k\right)=a[/tex]

[tex]k+1=-8\quad \quad \mathrm{or}\quad \:\quad \:k+1=8[/tex]

we get

[tex]k+1=-8\quad[/tex]

[tex]k=-9[/tex]

[tex]k+1=8\quad[/tex]

[tex]k=7[/tex]

so,

[tex]k=-9\quad \mathrm{or}\quad \:k=7[/tex]...............Answer

ACCESS MORE
EDU ACCESS