Respuesta :

Answer:

The correct option is:   A. [tex]\frac{x^1^2}{64}[/tex]

Step-by-step explanation:

Given expression is:   [tex](4x^-^4)^-^3[/tex]

First we will apply the outer exponent -3 with both 4 and [tex]x^-^4[/tex] inside the parenthesis. So, we will get:   [tex](4)^-^3(x^-^4)^-^3[/tex]

Now,  [tex](4)^-^3 = \frac{1}{(4)^3}= \frac{1}{64}[/tex]

and  [tex](x^-^4)^-^3= x^(^-^4^)^(^-^3^) = x^1^2[/tex]

Thus,   [tex](4)^-^3(x^-^4)^-^3 = (x^1^2)(\frac{1}{64})= \frac{x^1^2}{64}[/tex]

So, the simplified answer is  [tex]\frac{x^1^2}{64}[/tex]

ACCESS MORE