Use properties to rewrite the given equation. Which equations have the same solution as 3/5x +2/3 + x = 1/2– 1/5x? Check all that apply.
a. 8/5x+2/3=1/2-1/5x
b. 18x + 20 + 30x = 15 – 6x
c. 18x + 20 + x = 15 – 6x
d. 24x + 30x = –5
e. 12x + 30x = –5

Respuesta :

we have

[tex]\frac{3}{5}x+ \frac{2}{3}+x=\frac{1}{2}-\frac{1}{5}x[/tex]

Combine like terms in both sides

[tex](\frac{3}{5}x+ x)+\frac{2}{3}=\frac{1}{2}-\frac{1}{5}x[/tex]

we know that

[tex](\frac{3}{5}x+ x)=(\frac{3}{5}x+ \frac{5}{5}x)=\frac{8}{5}x[/tex]

substitute in the expression above

[tex]\frac{8}{5}x+\frac{2}{3}=\frac{1}{2}-\frac{1}{5}x[/tex]-----> equation A        

Multiply equation A by [tex]5*3*2=30[/tex] both sides

[tex]30*(\frac{8}{5}x+\frac{2}{3})=30*(\frac{1}{2}-\frac{1}{5}x)[/tex]

[tex]48x+20=15-6x[/tex] ---------> equation B

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]48x+6x=15-20[/tex]

[tex]54x=-5[/tex] ---------> equation C

Solve for x

[tex]x=-\frac{5}{54} =-0.09[/tex]

We are going to proceed to verify each case to determine the solution.

Case a) [tex]\frac{8}{5}x+\frac{2}{3}=\frac{1}{2}-\frac{1}{5}x[/tex]

the case a) is equal to the equation A

so

the case a) have the same solution that the given equation

Case b) [tex]18x+20+30x=15-6x[/tex]

Combine like terms in left side

[tex](18x+30x)+20=15-6x[/tex]

[tex](48x)+20=15-6x[/tex]

the case b) is equal to the equation B

so

the case b) have the same solution that the given equation

Case c) [tex]18x+20+x=15-6x[/tex]

Combine like terms in left side

[tex](18x+x)+20=15-6x[/tex]

[tex](19x)+20=15-6x[/tex]

[tex]19x+6x=15-20\\25x=-5\\x=-0.20[/tex]

[tex]-0.20\neq -0.09[/tex]

therefore

the case c) not have the same solution that the given equation

Case d) [tex]24x+30x=-5[/tex]

Combine like terms in left side

[tex]54x=-5[/tex]

the case d) is equal to the equation C

so

the case d) have the same solution that the given equation

Case e) [tex]12x+30x=-5[/tex]

Combine like terms in left side

[tex]42x=-5[/tex]

[tex]x=-5/42=-0.12[/tex]

[tex]-0.12\neq -0.09[/tex]

therefore

the case e) not have the same solution that the given equation

therefore

the answer is

case a) [tex]\frac{8}{5}x+\frac{2}{3}=\frac{1}{2}-\frac{1}{5}x[/tex]

case b) [tex]18x+20+30x=15-6x[/tex]

case d) [tex]24x+30x=-5[/tex]

Answer:

Option (a) , (b) and ( d) are equivalent to given expression [tex]\frac{3}{5}x+\frac{2}{3}+x= \frac{1}{2}- \frac{1}{5}x[/tex]

Step-by-step explanation:

 Given equation :  [tex]\frac{3}{5}x+\frac{2}{3}+x= \frac{1}{2}- \frac{1}{5}x[/tex]

We have to use  properties to rewrite the given equation and check which are correct from thee given options,

Consider the given equation,

[tex]\frac{3}{5}x+\frac{2}{3}+x= \frac{1}{2}- \frac{1}{5}x[/tex]

Applying commutative property of addition , [tex]a+b=b+ a[/tex]

Equation becomes,

[tex]\frac{3}{5}x+x+\frac{2}{3}= \frac{1}{2}- \frac{1}{5}x[/tex]

Now adding x terms on right side , we get,

[tex]\frac{3+5}{5}x+\frac{2}{3}= \frac{1}{2}- \frac{1}{5}x[/tex]

[tex]\Rightarrow \frac{8}{5}x+\frac{2}{3}= \frac{1}{2}- \frac{1}{5}x[/tex]

Thus, obtained option (a).

Again consider given equation ,

[tex]\frac{3}{5}x+\frac{2}{3}+x= \frac{1}{2}- \frac{1}{5}x[/tex]

Taking LCM both sides, we get,

[tex]\frac{9x+10+15x}{15}= \frac{5-2x}{10}[/tex]

Solving , we get,

[tex]\frac{9x+10+15x}{3}= \frac{5-2x}{2}[/tex]

Cross multiply, we get,

[tex]2\times (9x+10+15x)=3\times(5-2x)[/tex]

[tex]18x+20+30x=15-6x[/tex]

Thus, obtained option (b).

Taking like terms together,

[tex]18x+6x+30x=15-20[/tex]

[tex]\Rightarrow 24x+30x=-5[/tex]

Thus, obtained option (d).

Thus, Option (a) , (b) and ( d) are equivalent to given expression [tex]\frac{3}{5}x+\frac{2}{3}+x= \frac{1}{2}- \frac{1}{5}x[/tex]

ACCESS MORE