Answer:
The tree is approximately 6.4 feet away from the zip line.
Step-by-step explanation:
Equation of the line representing the zip line is [tex]y=-\frac{4}{5}x+5[/tex]
First we need to convert the above equation into [tex]ax+by+c=0[/tex] form. So........
[tex]y=-\frac{4}{5}x+5\\ \\ 5y=5(-\frac{4}{5}x+5)\\ \\ 5y=-4x+25\\ \\ 4x+5y-25=0[/tex]
Thus, [tex]a=4, b=5[/tex] and [tex]c=-25[/tex]
The formula for distance[tex](d)[/tex] from a point [tex](x_{0}, y_{0})[/tex] to the line [tex]ax+by+c=0[/tex] is.........
[tex]d=\frac{|a(x_{0})+b(y_{0})+c|}{\sqrt{a^2+b^2}}[/tex]
Given that, there is a tree in your yard at the point (4, 10). So here, [tex]x_{0}=4[/tex] and [tex]y_{0}=10[/tex]
Thus, the distance will be: [tex]d=\frac{|4(4)+5(10)-25|}{\sqrt{4^2+5^2}}= \frac{|16+50-25|}{\sqrt{16+25}}= \frac{41}{\sqrt{41}}=\sqrt{41}= 6.403... \approx 6.4[/tex] (Rounding to the nearest tenth)
So, the tree is approximately 6.4 feet away from the zip line.