Respuesta :

For this case we have a function of the form:

[tex]y = f (x)[/tex]

Where [tex]f(x)=-\frac{1}{2}x-5[/tex]

So, we have:

[tex]y=-\frac{1}{2}x-5[/tex], written in the form[tex]y = mx + b[/tex]

Where:

[tex]m=-\frac{1}{2}[/tex]is the slope

[tex]b = -5[/tex] is the cut point

To graph, we follow the steps below:

1st step:

We make[tex]x = 0[/tex]and replace:

[tex]y=-\frac{1}{2}(0)-5\\y=0-5\\y=-5[/tex]

So, we have the point:[tex](x1, y1) = (0, -5)[/tex]

2nd step:

We make[tex]y = 0[/tex] and replace:

[tex]0=-\frac{1}{2}x-5[/tex]

[tex]\frac{1}{2}x=-5\\x=-5*2\\x=-10[/tex]

So, we have the point: [tex](x2, y2) = (- 10,0)[/tex]

We locate the points obtained in a plane of coordinate axes and we obtain the graph observed in the attached image

Answer:

See attached image


Ver imagen carlosego

Answer:

It's (0,-5) and (2,-6)

Step-by-step explanation:


Ver imagen dreadhead117
ACCESS MORE
EDU ACCESS