Respuesta :
For this case we have a function of the form:
[tex]y = f (x)[/tex]
Where [tex]f(x)=-\frac{1}{2}x-5[/tex]
So, we have:
[tex]y=-\frac{1}{2}x-5[/tex], written in the form[tex]y = mx + b[/tex]
Where:
[tex]m=-\frac{1}{2}[/tex]is the slope
[tex]b = -5[/tex] is the cut point
To graph, we follow the steps below:
1st step:
We make[tex]x = 0[/tex]and replace:
[tex]y=-\frac{1}{2}(0)-5\\y=0-5\\y=-5[/tex]
So, we have the point:[tex](x1, y1) = (0, -5)[/tex]
2nd step:
We make[tex]y = 0[/tex] and replace:
[tex]0=-\frac{1}{2}x-5[/tex]
[tex]\frac{1}{2}x=-5\\x=-5*2\\x=-10[/tex]
So, we have the point: [tex](x2, y2) = (- 10,0)[/tex]
We locate the points obtained in a plane of coordinate axes and we obtain the graph observed in the attached image
Answer:
See attached image
