A) Calculate the average density of the following object (assume it is a perfect sphere). SHOW ALL YOUR WORK (formulas used, numbers plugged in with proper UNITS, and clearly indicate your final answer).

Mass=1.3x1022kg, Diameter=2300km

B) (extra credit problem) Working backwards... Calculate the mean radius of the following object (if it was a perfect sphere).

Density=687kg/m3, Mass=5.68x1026kg

Respuesta :

znk

Answers:

A) 2040 kg/m³; B) 58 600 km

Explanation:

A) Density

[tex]V = \frac{ 4}{3 }\pi r^{3} = \frac{ 4}{3 }\pi\times (\text{1150 km})^{3} = 6.37 \times 10^{9} \text{ km}^{3}[/tex]

[tex]\text{Density} = \frac{\text{mass}}{\text{volume}} = \frac{1.3\times 10^{22} \text{ kg} }{6.37 \times 10^{9} \text{ km}^{3}}\times (\frac{\text{1 km}}{\text{1000 m}})^{3} = \text{2040 kg/m}^{3}[/tex]

B) Radius

[tex]\text{Volume} = \frac{\text{mass}}{\text{density}} = \frac{5.68\times 10^{26} \text{ kg} }{687 \text{ kg/m}^{3} }= 8.268 \times 10^{23} \text{ m}^{3}[/tex]

[tex]V = \frac{ 4}{3 }\pi r^{3}[/tex]

[tex]r^{3} = \frac{3V }{4 \pi }\[/tex]

[tex]r= \sqrt [3]{ \frac{3V }{4 \pi } }[/tex]

[tex]r= \sqrt [3]{ \frac{3\times 8.268 \times 10^{23} \text{ m}^{3}}{4 \pi } }= \sqrt [3]{ 1.974 \times 10^{23} \text{ m}^{3}}= 5.82 \times 10^{7} \text{ m}=\text{58 200 km}[/tex]

ACCESS MORE