Respuesta :
We are given side length of a cube = (3x+2y).
Volume is given by formula [tex]V=s^3[/tex], where s is the side of cube.
We have s = (3x+2y).
Plugging s = (3x+2y) in formula now.
We get,
[tex]V=(3x+2y)^3[/tex]
Expanding by applying formula [tex](a+b)^3=(a)^3 + 3a^2b+3b^2a+(b)^3.[/tex]
[tex](3x+2y)^3 =(3x)^3+3(3x)^2(2y)+3(2y)^2(3x)+(2y)^3[/tex]
[tex](3x+2y)^3 = 27x^3+54x^2y+36xy^2+8y^3[/tex]
Therefore, correct option is 4th option : [tex]27x^3 + 54x^2y + 36xy^2 + 8y^3[/tex].
Answer:
D
The side length, s, of a cube is 3x + 2y. If V = s3, what is the volume of the cube?
3x3 + 18x2y + 36xy2 + 8y3
27x3 + 54x2y + 18xy2 + 2y3
27x3 + 18x2y + 12xy2 + 2y3
27x3 + 54x2y + 36xy2 + 8y3