The side length, s, of a cube is 3x + 2y. If V = s3, what is the volume of the cube? 3x3 + 18x2y + 36xy2 + 8y3 27x3 + 54x2y + 18xy2 + 2y3 27x3 + 18x2y + 12xy2 + 2y3 27x3 + 54x2y + 36xy2 + 8y3

Respuesta :

We are given side length of a cube = (3x+2y).

Volume is given by formula [tex]V=s^3[/tex], where s is the side of cube.

We have s = (3x+2y).

Plugging s = (3x+2y) in formula now.

We get,

[tex]V=(3x+2y)^3[/tex]

Expanding by applying formula [tex](a+b)^3=(a)^3 + 3a^2b+3b^2a+(b)^3.[/tex]

[tex](3x+2y)^3 =(3x)^3+3(3x)^2(2y)+3(2y)^2(3x)+(2y)^3[/tex]

[tex](3x+2y)^3 = 27x^3+54x^2y+36xy^2+8y^3[/tex]

Therefore, correct option is 4th option : [tex]27x^3 + 54x^2y + 36xy^2 + 8y^3[/tex].



Leofy

Answer:

D

The side length, s, of a cube is 3x + 2y. If V = s3, what is the volume of the cube?

3x3 + 18x2y + 36xy2 + 8y3

27x3 + 54x2y + 18xy2 + 2y3

27x3 + 18x2y + 12xy2 + 2y3

27x3 + 54x2y + 36xy2 + 8y3

ACCESS MORE