Answer:
The rule that represents function is [tex]y=\frac{1}{2} x^2[/tex].
Step-by-step explanation:
Given ordered pairs (0, 0), (1, 0.5), (2, 2), (3, 4.5) and (4, 8) 0r we can write [tex](0,0)[/tex], [tex](1, \frac{1}{2})[/tex], [tex](2,2)[/tex], [tex](3,\frac{9}{2})[/tex] and [tex](4,8)[/tex].
To find the rule of the function, it is important to find any invariant value for any x-values.
For this case we can see that if we square each value of x and then multiply by [tex]\frac{1}{2}[/tex], we get the corresponding values of y, i.e,
[tex]\frac{1}{2}\cdot (0)^2[/tex][tex]=0[/tex]
[tex]\frac{1}{2}\cdot (1)^2=\frac{1}{2}[/tex]
[tex]\frac{1}{2}\cdot (2)^2=\frac{1}{2}\cdot 4=2[/tex]
[tex]\frac{1}{2}\cdot (3)^2=\frac{1}{2}\cdot 9=\frac{9}{2} =4.5[/tex]
[tex]\frac{1}{2}\cdot (4)^2=\frac{1}{2}\cdot 16=8[/tex]
As you can see above , the rule of function follows above is, [tex]y=\frac{1}{2} x^2[/tex]