Question: The population of a country is 9.7 x 107, and is increasing by 8.7 x 105 people each year. Show your work for each calculation, and answer in scientific notation: 1. How many new people are added after 25 years? 2. What is the population after 25 years? Type your answer below:

Respuesta :

QUESTION 1

Let [tex]n[/tex] represent the number of years.


Then each year the number of people added is given by the function

[tex]N(n)=8.7\times 10^5(n)[/tex]


Therefore after [tex]25[/tex] years,


[tex]N(25)=8.7\times 10^5(25)[/tex]


[tex]N(25)=21750000[/tex]

In scientific notation,

[tex]N(25)=2.175\times 10^7[/tex]


ANSWER TO QUESTION 2


The population after 25 years can be calculated by adding the increment in population to the initial population.

The initial population

[tex]P_0=9.7\times 10^7[/tex]


The population  after 25 years

[tex]P(25)=9.7\times 10^7+2.175\times 10^7[/tex]


[tex]P(25)=(9.7+2.175)\times 10^7[/tex]


[tex]P(25)=(11.875)\times 10^7[/tex]


[tex]P(25)=1.1875\times 10^1 \times 10^7[/tex]


[tex]P(25)=1.1875\times 10^1 \times 10^7[/tex]


[tex]P(25)=1.1875\times 10^8[/tex]

Answer:

1. [tex]2.175*10^{7}[/tex]

2. [tex]1.1875*10^{8}[/tex]

Step-by-step explanation:

We are given that population of a country is [tex]9.7*10^{7}[/tex] , and is increasing by [tex]8.7*10^{5}[/tex] people each year.

1. To find number of people added after 25 years we will multiply 25 by [tex]8.7*10^{5}[/tex].

[tex](2.5\cdot 10^{1})\cdot (8.7\cdot 10^{5})[/tex]

[tex](2.5\cdot 8.7)\cdot (10^{1+5})[/tex]

[tex](21.75)\cdot (10^{6})=(2.175)\cdot (10^{7})[/tex]

Therefore, [tex]2.175\cdot 10^{7}[/tex] will be added after 25 years.

2. To find out population after 25 years we will add population added in 25 years to initial population.

[tex]9.7*10^{7}+2.175\cdot 10^{7}[/tex]

[tex]11.875\cdot 10^{7}[/tex]

[tex]1.1875\cdot 10^{8}[/tex]

Therefore, population after 25 years will be [tex]1.1875\cdot 10^{8}[/tex].

ACCESS MORE