Respuesta :
QUESTION 1
Let [tex]n[/tex] represent the number of years.
Then each year the number of people added is given by the function
[tex]N(n)=8.7\times 10^5(n)[/tex]
Therefore after [tex]25[/tex] years,
[tex]N(25)=8.7\times 10^5(25)[/tex]
[tex]N(25)=21750000[/tex]
In scientific notation,
[tex]N(25)=2.175\times 10^7[/tex]
ANSWER TO QUESTION 2
The population after 25 years can be calculated by adding the increment in population to the initial population.
The initial population
[tex]P_0=9.7\times 10^7[/tex]
The population after 25 years
[tex]P(25)=9.7\times 10^7+2.175\times 10^7[/tex]
[tex]P(25)=(9.7+2.175)\times 10^7[/tex]
[tex]P(25)=(11.875)\times 10^7[/tex]
[tex]P(25)=1.1875\times 10^1 \times 10^7[/tex]
[tex]P(25)=1.1875\times 10^1 \times 10^7[/tex]
[tex]P(25)=1.1875\times 10^8[/tex]
Answer:
1. [tex]2.175*10^{7}[/tex]
2. [tex]1.1875*10^{8}[/tex]
Step-by-step explanation:
We are given that population of a country is [tex]9.7*10^{7}[/tex] , and is increasing by [tex]8.7*10^{5}[/tex] people each year.
1. To find number of people added after 25 years we will multiply 25 by [tex]8.7*10^{5}[/tex].
[tex](2.5\cdot 10^{1})\cdot (8.7\cdot 10^{5})[/tex]
[tex](2.5\cdot 8.7)\cdot (10^{1+5})[/tex]
[tex](21.75)\cdot (10^{6})=(2.175)\cdot (10^{7})[/tex]
Therefore, [tex]2.175\cdot 10^{7}[/tex] will be added after 25 years.
2. To find out population after 25 years we will add population added in 25 years to initial population.
[tex]9.7*10^{7}+2.175\cdot 10^{7}[/tex]
[tex]11.875\cdot 10^{7}[/tex]
[tex]1.1875\cdot 10^{8}[/tex]
Therefore, population after 25 years will be [tex]1.1875\cdot 10^{8}[/tex].