Respuesta :
Let us assume Doreen rate = x miles per hour.
Sue travels 19 miles per hour faster than Doreen.
Therefore,
Rate of Sue = (x+19) miles per hour.
We know time, rate and distance relation as
Time = Distance / rate.
Therefore, time taken by Doreen to travel 42 miles at the rate x miles per hour =
[tex]\frac{42}{x}[/tex].
And time taken by Sue to travel 100 miles at the rate (x+19) miles per hour =
[tex]\frac{100}{(x+19)}[/tex].
Sue takes 3 hours less time than it takes Doreen.
Therefore,
[tex]\frac{42}{x}-\frac{100}{(x+19)}=3[/tex]
We need to solve the equatuion for x now.
[tex]\frac{42}{x}-\frac{100}{\left(x+19\right)}=3[/tex]
[tex]\mathrm{Find\:Least\:Common\:Multiplier\:of\:}x,\:x+19:\quad x\left(x+19\right)[/tex]
[tex]\mathrm{Multiply\:by\:LCM=}x\left(x+19\right)[/tex]
[tex]\frac{42}{x}x\left(x+19\right)-\frac{100}{x+19}x\left(x+19\right)=3x\left(x+19\right)[/tex]
[tex]42\left(x+19\right)-100x=3x\left(x+19\right)[/tex]
[tex]-58x+798=3x^2+57x[/tex]
[tex]3x^2+57x=-58x+798[/tex]
[tex]3x^2+57x-798=-58x+798-798[/tex]
[tex]3x^2+57x-798=-58x[/tex]
[tex]\mathrm{Add\:}58x\mathrm{\:to\:both\:sides}[/tex]
[tex]3x^2+57x-798+58x=-58x+58x[/tex]
[tex]3x^2+115x-798=0[/tex]
[tex]\mathrm{Solve\:with\:the\:quadratic\:formula}[/tex]
[tex]\quad x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\frac{-115+\sqrt{115^2-4\cdot \:3\left(-798\right)}}{2\cdot \:3}:\quad 6[/tex]
[tex]x=\frac{-115-\sqrt{115^2-4\cdot \:3\left(-798\right)}}{2\cdot \:3}:\quad -\frac{133}{3}[/tex]
[tex]x=6,\:x=-\frac{133}{3}[/tex]
We can't take rates as negative numbers.
So, the rate of Doreen (x) = 6 miles per hour.
Rate of Sue = x+19 = 6+19 = 25 miles per hour.
Time taken by Doreen @ 6 miles per hour to cover 42 miles = 42/6 = 7 hours.
Time taken by Sue @ the rate 25 miles per hour to cover 100 miles = 100/25 = 4 hours.