Respuesta :

We are given

△ABC, m∠A=60° m∠C=45°, AB=8

Firstly, we will find all angles and sides

Calculation of angle B:

we know that sum of all angles is 180

m∠A+ m∠B+m∠C=180

we can plug values

60°+ m∠B+45°=180

m∠B=75°

Calculation of BC:

we can use law of sines

[tex]\frac{AB}{sin(C)}=\frac{BC}{sin(A)}[/tex]

now, we can plug values

[tex]\frac{8}{sin(45)}=\frac{BC}{sin(60)}[/tex]

[tex]BC=\frac{8}{sin(45)} \times sin(60)[/tex]

[tex]BC=9.798[/tex]

Calculation of AC:

[tex]\frac{AB}{sin(C)}=\frac{AC}{sin(B)}[/tex]

now, we can plug values

[tex]\frac{8}{sin(45)}=\frac{AC}{sin(75)}[/tex]

[tex]AC=\frac{8}{sin(45)} \times sin(75)[/tex]

[tex]AC=10.928[/tex]

Perimeter:

[tex]p=AB+BC+AC[/tex]

we can plug values

[tex]p=10.928+8+9.798[/tex]

[tex]p=28.726[/tex]

Area:

we can use formula

[tex]A=\frac{1}{2}AB \times AC \times sin(A)[/tex]

now, we can plug values

[tex]A=\frac{1}{2}8 \times 10.928 \times sin(60)[/tex]

[tex]A=37.85570[/tex]...............Answer

The perimeter of triangle of ABC is [tex]\boxed{28.73}.[/tex]

Further explanation:

Given:

The measure of angle A is [tex]\angle A = {60^ \circ }.[/tex]

The measure of angle C is [tex]\angle C = {45^ \circ }.[/tex]

The length of side AB is [tex]AB = 8[/tex]

Calculation:

The sum of all angles of a triangle is [tex]{180^ \circ }.[/tex]

[tex]\begin{aligned}\angle A + \angle B + \angle C&={180^ \circ }\\{60^ \circ } + \angle B + {45^ \circ }&= {180^ \circ }\\{105^ \circ }+\angle B&= {180^ \circ }\\\angleB&= {180^ \circ } - {105^ \circ }\\\angleB&= {75^ \circ }\\\end{aligned}[/tex]

The sine rule in triangle ABC can be expressed as,

[tex]\begin{aligned}\frac{{BC}}{{\sin {{60}^ \circ }}}&=\frac{8}{{\sin {{45}^ \circ }}}\\BC&= \frac{8}{{\frac{1}{{\sqrt2 }}}} \times \frac{{\sqrt 3 }}{2}\\BC &= 9.80\\\end{aligned}[/tex]

The length of AC can be calculated as follows,

[tex]\begin{aligned}\frac{{AB}}{{\sin {{45}^ \circ }}}&=\frac{{AC}}{{\sin {{75}^ \circ }}}\\\frac{8}{{\sin {{45}^ \circ }}}\times \sin {75^ \circ }&= AC\\10.93& = AC\\\end{aligned}[/tex]

The perimeter of triangle ABC can be obtained as follows,

[tex]\begin{aligned}{\text{Perimeter}}&= AB + BC + AC\\&= 8 + 9.80 + 10.93\\&= 28.73\\\end{aligned}[/tex]

The area of triangle ABC can be obtained as follows,

[tex]\begin{aligned}{\text{Area}}&=\frac{1}{2} \times AB \times AC \times \sin \left( A \right)\\&= \frac{1}{2}\times 8 \times 10.93 \times \sin {60^ \circ }\\&= 4\times 10.93 \times \frac{{\sqrt3 }}{2}\\&= 37.86\\\end{aligned}[/tex]

The perimeter of triangle of ABC is [tex]\boxed{28.73}[/tex] and the area of triangle ABC is [tex]\boxed{37.86}.[/tex]

Learn more:

1. Learn more about inverse of the function https://brainly.com/question/1632445.

2. Learn more about equation of circle brainly.com/question/1506955.

3. Learn more about range and domain of the function https://brainly.com/question/3412497

Answer details:

Grade: Middle School

Subject: Mathematics

Chapter: Triangles

Keywords: angles, ABC, angle A=60 degree, perimeter, area of triangle, triangle ABC.