Respuesta :
Answer:
The measure of [tex]\angle KNL = 87\°[/tex]
Step-by-step explanation:
According to the below diagram, horizontal line segment [tex]MK[/tex] intersects with [tex]JL[/tex] at their midpoint [tex]N[/tex].
So, [tex]\angle JNM = \angle KNL[/tex] (As they are vertical angles)
Given that, [tex]\angle JNM = (5x+2)\°[/tex] and [tex]\angle MNL = [3(x+14)]\°[/tex]
As they are adjacent angles and points [tex]J, N[/tex] and [tex]L[/tex] are co-linear, so [tex]\angle JNM +\angle MNL = 180\°[/tex]
That means.......
[tex](5x+2)+3(x+14)=180\\ \\ 5x+2+3x+42=180\\ \\ 8x+44=180\\ \\ 8x=180-44=136\\ \\ x=\frac{136}{8}=17[/tex]
Thus, [tex]\angle KNL =\angle JNM= (5*17+2)\° = 87\°[/tex]
t N.
In the figure shown below
Answer:
A horizontal line segment M K intersects with line segment J L at their midpoint N.
∠J N M =(5x+2)°
∠ LN M=3( x+ 14)°
So, ∠J N M + ∠ LN M =180°[ These two angles form linear pair.Angles forming linear pair are supplementary.]
⇒5 x+ 2+ 3 (x+ 14) =180 [ By Substitution]
⇒ 5 x+2 +3 x+42°= 180°
⇒ 8 x=180°-44°
⇒8 x= 136°
⇒x= 136°÷8
⇒x=17°
So, ∠J N M =5×17 +2=87°
∠ LN M= 3×(17 +14)=3×31=93
∠J N M =∠K N L [Vertically opposite angles]
∠K N L=87°