assume that when adults with smartphones are randomly selected, 44% use them in meetings or classes. If 10 adult smartphones users are randomly selected find the probability that fewer than 3 of them

Respuesta :

Solution: The given random experiment follows Binomial distribution with [tex]n=10,p=0.44[/tex]

Let [tex]X[/tex] be the number of adults who use their smartphones in meetings or classes.

Therefore, we have to find:

[tex]P(X<3)[/tex]

We know the binomial model is:

[tex]P(X=x)=\binom{n}{x} p^{x} (1-p)^{n-x}[/tex]

[tex]\therefore P(X<3) = P(X=0)+P(X=1) +P(X=2)[/tex]

                       [tex]=\binom{10}{0}0.44^{0}(1-0.44)^{12-0}+\binom{10}{1}0.44^{1}(1-0.44)^{10-1}+\binom{10}{2}0.44^{2}(1-0.44)^{10-2}[/tex]

                       [tex]=1 \times 1 \times 0.0030 + 10 \times 0.44 \times 0.0054 + 45 \times 0.1936 \times 0.009672[/tex]

                       [tex]=0.0030+0.0238+0.0843[/tex]

                       [tex]=0.1111[/tex]

Therefore, the probability that fewer than 3 of them is 0.1111