Solution: The given random experiment follows Binomial distribution with [tex]n=10,p=0.44[/tex]
Let [tex]X[/tex] be the number of adults who use their smartphones in meetings or classes.
Therefore, we have to find:
[tex]P(X<3)[/tex]
We know the binomial model is:
[tex]P(X=x)=\binom{n}{x} p^{x} (1-p)^{n-x}[/tex]
[tex]\therefore P(X<3) = P(X=0)+P(X=1) +P(X=2)[/tex]
[tex]=\binom{10}{0}0.44^{0}(1-0.44)^{12-0}+\binom{10}{1}0.44^{1}(1-0.44)^{10-1}+\binom{10}{2}0.44^{2}(1-0.44)^{10-2}[/tex]
[tex]=1 \times 1 \times 0.0030 + 10 \times 0.44 \times 0.0054 + 45 \times 0.1936 \times 0.009672[/tex]
[tex]=0.0030+0.0238+0.0843[/tex]
[tex]=0.1111[/tex]
Therefore, the probability that fewer than 3 of them is 0.1111