Respuesta :

Here we are given the expression:

[tex]x^{2}+18[/tex]

Now let us equate it to zero to find x first,

[tex]x^{2}+18=0[/tex]

Now subtracting 18 from the other side,

[tex]x^{2}=-18[/tex]

taking square root on both sides,

So we will get two values of x as ,

[tex]x=3\sqrt{-2}[/tex]

[tex]x=-3\sqrt{-2}[/tex]

Now we can write square root -1 as i,

So our factors become,

[tex]x=3i\sqrt{2}[/tex]

[tex]x=-3i\sqrt{2}[/tex]

Answer:

The final factored form becomes,

[tex](x+3i\sqrt{2})(x-3i\sqrt{2})[/tex]



Answer:

[tex](x+3i\sqrt{2})(x-3i\sqrt{2})[/tex]

Step-by-step explanation:

1. You must apply the Quadratic formula, which is:

[tex]x=\frac{-b+/-\sqrt{b^{2}-4ac} }{2a}[/tex]

2. Substitute values:

[tex]a=1\\b=0\\c=18[/tex]

[tex]x=\frac{-0+/-\sqrt{0^{2}-4(1)(18)} }{2(1)}\\x=\frac{+/-\sqrt{-72}}{2}\\x=\frac{+/-6i\sqrt{2}}{2}\\x=+/-3i\sqrt{2}[/tex]

3. Finally, you obtain:

[tex](x+3i\sqrt{2})(x-3i\sqrt{2})[/tex]