Respuesta :
Here we are given the expression:
[tex]x^{2}+18[/tex]
Now let us equate it to zero to find x first,
[tex]x^{2}+18=0[/tex]
Now subtracting 18 from the other side,
[tex]x^{2}=-18[/tex]
taking square root on both sides,
So we will get two values of x as ,
[tex]x=3\sqrt{-2}[/tex]
[tex]x=-3\sqrt{-2}[/tex]
Now we can write square root -1 as i,
So our factors become,
[tex]x=3i\sqrt{2}[/tex]
[tex]x=-3i\sqrt{2}[/tex]
Answer:
The final factored form becomes,
[tex](x+3i\sqrt{2})(x-3i\sqrt{2})[/tex]
Answer:
[tex](x+3i\sqrt{2})(x-3i\sqrt{2})[/tex]
Step-by-step explanation:
1. You must apply the Quadratic formula, which is:
[tex]x=\frac{-b+/-\sqrt{b^{2}-4ac} }{2a}[/tex]
2. Substitute values:
[tex]a=1\\b=0\\c=18[/tex]
[tex]x=\frac{-0+/-\sqrt{0^{2}-4(1)(18)} }{2(1)}\\x=\frac{+/-\sqrt{-72}}{2}\\x=\frac{+/-6i\sqrt{2}}{2}\\x=+/-3i\sqrt{2}[/tex]
3. Finally, you obtain:
[tex](x+3i\sqrt{2})(x-3i\sqrt{2})[/tex]