here given that the velocity of the probe is
[tex]v_x = - v sin\omega t[/tex]
[tex]v_y = v cos\omega t[/tex]
now at initial position where t = 0
[tex]v_{xi} = - v sin0 = 0[/tex]
[tex]v_{yi} = v cos 0 = v[/tex]
Now after t = 24 minutes we need to find final components of velocity
[tex]v_{xf} = - v sin(1.20* 10^{-3} * 24*60) = -v sin(1.728)[/tex]
[tex]v_{yf} = v cos(1.20* 10^{-3} * 24*60) = v cos(1.728)[/tex]
now as we know that acceleration is given as
[tex]a = \frac{v_f - v_i}{t}[/tex]
Now for x direction of motion
[tex]a_x = \frac{v_{xf} - v_{xi}}{t}[/tex]
[tex]a_x = \frac{- v sin(1.728) - 0}{24*60}[/tex]
[tex]a_x = \frac{-7.77*10^3 * 0.99}{24*60}[/tex]
[tex]a_x = -5.33 m/s^2[/tex]
Now for y direction of motion
[tex]a_y = \frac{v_{yf} - v_{yi}}{t}[/tex]
[tex]a_y = \frac{ v cos(1.728) - v}{24*60}[/tex]
[tex]a_y = \frac{7.77*10^3 * (-0.16) - 7.77 * 10^3}{24*60}[/tex]
[tex]a_y = -6.24 m/s^2[/tex]
now in order to find the magnitude of acceleration we can say
[tex]a = \sqrt{a_x^2 + a_y^2}[/tex]
[tex]a = \sqrt{5.33^2 + 6.24^2} = 8.2 m/s^2[/tex]