Respuesta :
Answer:
The correct option is: (-1, 3)
Step-by-step explanation:
The given equation is: [tex]2x^2-3x-2=x+4[/tex]
First we will move all terms to the left side and make the right side as zero. So......
[tex]2x^2-3x-2-x-4=0\\ \\ 2x^2-4x-6=0[/tex]
Now, we can divide both sides of this equation by 2. So, we will get......
[tex]\frac{2x^2-4x-6}{2}=\frac{0}{2}\\ \\ x^2-2x-3=0[/tex]
Factoring out the left side..........
[tex]x^2-2x-3 =0\\ \\ (x-3)(x+1)=0[/tex]
Now, using zero-product property, we will get.........
[tex]x-3=0\\x=3\\ \\and\\ \\ x+1=0\\ x=-1[/tex]
So, the solutions to the equation will be: (-1, 3)