Respuesta :

We are given

First expression:

[tex]4^{-5} \cdot (4 \cdot 9)^{5} \cdot 9^{-3}=4^{-5} \cdot (4^{5} \cdot 9^{5}) \cdot 9^{-3}[/tex]

We used property

power rule-II:

Product to power distribute  to each base

[tex](a \cdot b)^m=a^m \cdot b^m[/tex]

Second expression:

[tex]=(4^{-5} \cdot 4^{5}) \cdot ( 9^{5}) \cdot 9^{-3})[/tex]

we used property

associative property of multiplication:

[tex]a \cdot b \cdot c \cdot d =(a \cdot b) \cdot (c \cdot d)[/tex]

Third expression:

[tex]=4^0 \cdot 9^2[/tex]

we used property

Product Rule:

Same base add exponents

[tex]a^m \cdot a^n =a^{m+n}[/tex]

Fourth expression:

[tex]=1 \cdot 9^2[/tex]

we used property

Zero Exponent :

Anything to the zero power  (except 0) is one

[tex]a^0=1[/tex]

Fifth expression:

[tex]= 9^2[/tex]

we used property

Multiplicative identity:

[tex]1 \cdot a=a[/tex]

Sixth expression:

[tex]= 81[/tex]

We used simplification