Respuesta :

First of all m<1 + m<2 = m<ACD

Soo we just need to add them.

74 + 36 = 110

So m<ACD = 110 degrees.

GOOD LUCK! :)

Answer:

[tex]m\angle ACD=110^{\circ}[/tex]

Step-by-step explanation:

Given information: AO = OD, OB = OC, m∠1=74˚, m∠2=36˚.

In triangle OAB and ODC,

[tex]AO=OD[/tex]                              (Given)

[tex]m\angle AOB=m\angle DOC[/tex]             (Vertical angles)

[tex]OB=OC[/tex]                              (Given)

By SAS postulate,

[tex]\triangle OAB\cong \triangle ODC[/tex]

[tex]\angle OBA\cong \triangle OCD[/tex]             (CPCTC)

[tex]m\angle OBA=m\triangle OCD[/tex]

[tex]74^{\circ}=m\triangle OCD[/tex]

From the given figure it is clear that

[tex]\angle ACD=\angle ACO+\angle OCD[/tex]

[tex]\angle ACD=36^{\circ}+74^{\circ}[/tex]

[tex]\angle ACD=110^{\circ}[/tex]

Therefore, the measure of angle ACD is 110°.