contestada

Factor the expression completely over the complex numbers.

x^4−625


Factor the expression completely over the complex numbers.

x^4+10x^2+25

Respuesta :

[tex]x^4-625=(x^2-25)(x^2+25)=(x-5)(x+5)(x-5i)(x+5i)\\\\x^4+10x^2+25=(x^2+5)^2=((x-\sqrt5i)(x+\sqrt5i))^2=(x-\sqrt5i)^2(x+\sqrt5i)^2[/tex]

Answer:

1) [tex]x^4-625=(x+5i)(x-5i)(x+5)(x-5)[/tex]

2) [tex]x^4+10x^2+25=(x+\sqrt{5}i)^2(x-\sqrt5 i)^2[/tex]

Step-by-step explanation:

1) Given : Expression [tex]x^4-625[/tex]

To find : Factor the expression completely over the complex numbers ?

Solution :

We can re-write the expression as,

[tex]x^4-625=(x^2)^2-(25)^2[/tex]

Applying identity, [tex]a^2-b^2 = (a+b)(a-b)[/tex]

[tex]x^4-625=(x^2+25)(x^2-25)[/tex]

[tex]x^4-625=(x^2+25)(x^2-5^2)[/tex]

Again apply same identity,

[tex]x^4-625=(x^2+25)(x+5)(x-5) [/tex]

The factor of [tex]x^2+25=(x+5i)(x-5i)[/tex]

Factor form is [tex]x^4-625=(x+5i)(x-5i)(x+5)(x-5)[/tex]

2) Given : Expression [tex]x^4+10x^2+25[/tex]

To find : Factor the expression completely over the complex numbers ?

Solution :

Expression [tex]x^4+10x^2+25[/tex]

Let [tex]x^2=y[/tex]

[tex]y^2+10y+25[/tex]

To factor we equate it to zero.

[tex]y^2+10y+25=0[/tex]

Apply middle term split,

[tex]y^2+5y+5y+25=0[/tex]

[tex]y(y+5)+5(y+5)=0[/tex]

[tex](y+5)(y+5)=0[/tex]

Substitute back,

[tex](x^2+5)(x^2+5)=0[/tex]

[tex](x^2+5)^2=0[/tex]

[tex]x^2+5=0[/tex]

[tex]x^2=-5[/tex]

Taking root both side,

[tex]x=\sqrt{-5}[/tex]

[tex]x=\pm \sqrt{5}i[/tex]

So, The factors are [tex](x+\sqrt{5}i)(x-\sqrt5 i)[/tex]

Factor form is [tex]x^4+10x^2+25=(x+\sqrt{5}i)^2(x-\sqrt5 i)^2[/tex]