Respuesta :

gmany

The formula of a midpoint:

[tex]M_{AB}\left(\dfrac{x_A+x_B}{2},\ \dfrac{y_A+y_B}{2}\right)[/tex]

We have:

[tex]A(8,\ 4)\to x_A=8,\ y_A=4\\B(12,\ 2)\to x_B=12,\ y_B=2[/tex]

Substitute:

[tex]\dfrac{8+12}{2}=\dfrac{20}{2}=10\\\\\dfrac{4+2}{2}=\dfrac{6}{2}=3[/tex]

Answer: (10, 3).

Let's first recall what is known as the Midpoint formula we have, so by the Midpoint formula, we know that, the midpoint of any line segment joining the points [tex]{\bf{A(x_{1},y_{1})}}[/tex] and [tex]{\bf{B(x_{2},y_{2})}}[/tex] is given by

  • [tex]{\boxed{\bf{M(x,y)=\bigg(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2}\bigg)}}}[/tex]

Now, if we assume our points to be A(8,4) and B(12,2) and the midpoint being M, then we will be having :

[tex]{:\implies \quad \sf M=\bigg(\dfrac{8+12}{2},\dfrac{4+2}{2}\bigg)}[/tex]

[tex]{:\implies \quad \sf M=\bigg(\dfrac{20}{2},\dfrac{6}{2}\bigg)}[/tex]

[tex]{:\implies \quad \boxed{\bf{M=(10,3)}}}[/tex]

Hence, the required Midpoint is (10,3)