contestada

mary pitches a ball. the initial height is 4 ft and velocity 55 ft per second. when will the ball hit the ground?

Respuesta :

Answer:

t = 3.5 sec

Step-by-step explanation:

The equation that represents the position of the ball as a function of time is the following:

[tex]h(t) =P_{o} + V_{o}t+\frac{1}{2}2at^2[/tex]

Where:

[tex]P_{o}[/tex] = Initial position of the ball (4 feet tall)

[tex]V_{0}[/tex] = Initial speed of the ball (55feet / s)

a = acceleration (9.8 [tex]\frac{m}{s^2}[/tex], or in this case 32.16[tex]\frac{ft}{s^2}[/tex])

t = time in seconds

Then we want to know how long it takes to get to the ground, for this we equal h (t) = 0 and clear t.

So:

[tex]0 = 4 + 55t -16.08t ^ 2[/tex]

Solving the second degree equation we have:

[tex]\frac{-b+\sqrt{b ^ 2-4ac}}{2a} \\ \frac{-b-\sqrt{b ^ 2-4ac}}{2a}[/tex]

[tex]\frac{-55+\sqrt{55^2-4 (-16.08) 4}}{2 (-16.08)}= -0.0712\\\frac{-55-\sqrt{55^2-4 (-16.08) 4}}{2 (-16.08)} = 3.492[/tex]

t = -0.071 sec

t = 3.5 sec

We must take the positive solution.

So:

t = 3.5 sec