Answer:
t = 3.5 sec
Step-by-step explanation:
The equation that represents the position of the ball as a function of time is the following:
[tex]h(t) =P_{o} + V_{o}t+\frac{1}{2}2at^2[/tex]
Where:
[tex]P_{o}[/tex] = Initial position of the ball (4 feet tall)
[tex]V_{0}[/tex] = Initial speed of the ball (55feet / s)
a = acceleration (9.8 [tex]\frac{m}{s^2}[/tex], or in this case 32.16[tex]\frac{ft}{s^2}[/tex])
t = time in seconds
Then we want to know how long it takes to get to the ground, for this we equal h (t) = 0 and clear t.
So:
[tex]0 = 4 + 55t -16.08t ^ 2[/tex]
Solving the second degree equation we have:
[tex]\frac{-b+\sqrt{b ^ 2-4ac}}{2a} \\ \frac{-b-\sqrt{b ^ 2-4ac}}{2a}[/tex]
[tex]\frac{-55+\sqrt{55^2-4 (-16.08) 4}}{2 (-16.08)}= -0.0712\\\frac{-55-\sqrt{55^2-4 (-16.08) 4}}{2 (-16.08)} = 3.492[/tex]
t = -0.071 sec
t = 3.5 sec
We must take the positive solution.
So:
t = 3.5 sec