Given points (-4, -113) (5,-293) and (-1,7)
We frame 3 equations using the given points
[tex]y=ax^2+bx+c[/tex]
Plug in (-4, -113)
[tex]-113=a(-4)^2+b(-4)+c[/tex]
-113 = 16a -4b + c -------> first equation
Plug in (5,-293)
[tex]-293=a(5)^2+b(5)+c[/tex]
-293 = 25a +5b + c----> second equation
Plug in (-1,7)
[tex]7=a(-1)^2+b(-1)+c[/tex]
7 = 1a -1b + c -----> third equation
Now we use the three equation and solve for a,b,c
Use first and second equation and subtract it
-113 = 16a -4b + c
+293 = -25a -5b - c
----------------------------------
180 = -9a + -9b (divide the whole equation by 9)
20= -1a -1b --------------> fourth equation
Subtract third equation from first equation
-113 = 16a -4b + c
-7 = -1a +1b - c
----------------------------------
-120 = 15a - 3b (divide by -3 on both sides)
40 = -5a +b --------------> fifth equation
Use fourth and fifth equation
20= -1a -1b
40 = -5a +b
Add both equations
60 = -6a
so a= -10
Now we use the fourth equation
20= -1a -1b
20 = -1(-10) -1b
20 = 10 - 1b
-1b = 10
so b =-10
Now plug in the values in third equation
7 = 1a -1b + c
7 = 1(-10) -1(-10) + c
7 = c
We got a=-10, b=-10 and c=7
So equation becomes [tex]y=-10x^2-10x+7[/tex]