Find the directional derivative of f(x,y,z)=z3−x2yf(x,y,z)=z3−x2y at the point (−5,5,2)(−5,5,2) in the direction of the vector v=⟨−3,2,−4⟩v=⟨−3,2,−4⟩.

Respuesta :

We are given

[tex]f=z^3 -x^2y[/tex]

Firstly, we can find gradient

so, we will find partial derivatives

[tex]f_x=0 -2xy[/tex]

[tex]f_x=-2xy[/tex]

[tex]f_y=0 -x^2[/tex]

[tex]f_y=-x^2[/tex]

[tex]f_z=3z^2 [/tex]

now, we can plug point (-5,5,2)

[tex]f_x=-2*-5*5=50[/tex]

[tex]f_y=-(-5)^2=-25[/tex]

[tex]f_z=3(2)^2=12 [/tex]

so, gradient will be

[tex]gradf=(50,-25,12)[/tex]

now, we are given that

it is in direction of v=⟨−3,2,−4⟩

so, we will find it's unit vector

[tex]|v|=\sqrt{(-3)^2+(2)^2+(-4)^2}[/tex]

[tex]|v|=\sqrt{29}[/tex]

now, we can find unit vector

[tex]v'=(\frac{-3}{\sqrt{29} } , \frac{2}{\sqrt{29} } , \frac{-4}{\sqrt{29} })[/tex]

now, we can find dot product to find direction of the vector

[tex]dir=(gradf) \cdot (v')[/tex]

now, we can plug values

[tex]dir=(50,-25,12) \cdot (\frac{-3}{\sqrt{29} } , \frac{2}{\sqrt{29} } , \frac{-4}{\sqrt{29} })[/tex]

[tex]dir=(-\frac{150}{\sqrt{29} } - \frac{50}{\sqrt{29} } - \frac{48}{\sqrt{29} })[/tex]

[tex]dir=-\frac{248\sqrt{29}}{29}[/tex].............Answer



Answer:

what he/she said

Step-by-step explanation: