Respuesta :
We are given
[tex]f=z^3 -x^2y[/tex]
Firstly, we can find gradient
so, we will find partial derivatives
[tex]f_x=0 -2xy[/tex]
[tex]f_x=-2xy[/tex]
[tex]f_y=0 -x^2[/tex]
[tex]f_y=-x^2[/tex]
[tex]f_z=3z^2 [/tex]
now, we can plug point (-5,5,2)
[tex]f_x=-2*-5*5=50[/tex]
[tex]f_y=-(-5)^2=-25[/tex]
[tex]f_z=3(2)^2=12 [/tex]
so, gradient will be
[tex]gradf=(50,-25,12)[/tex]
now, we are given that
it is in direction of v=⟨−3,2,−4⟩
so, we will find it's unit vector
[tex]|v|=\sqrt{(-3)^2+(2)^2+(-4)^2}[/tex]
[tex]|v|=\sqrt{29}[/tex]
now, we can find unit vector
[tex]v'=(\frac{-3}{\sqrt{29} } , \frac{2}{\sqrt{29} } , \frac{-4}{\sqrt{29} })[/tex]
now, we can find dot product to find direction of the vector
[tex]dir=(gradf) \cdot (v')[/tex]
now, we can plug values
[tex]dir=(50,-25,12) \cdot (\frac{-3}{\sqrt{29} } , \frac{2}{\sqrt{29} } , \frac{-4}{\sqrt{29} })[/tex]
[tex]dir=(-\frac{150}{\sqrt{29} } - \frac{50}{\sqrt{29} } - \frac{48}{\sqrt{29} })[/tex]
[tex]dir=-\frac{248\sqrt{29}}{29}[/tex].............Answer