The activation energy barrier is 40.1 kJ·mol⁻¹
Use the Arrhenius equation
[tex]\ln( \frac{k_2 }{k_1 }) = (\frac{E_{a} }{R })(\frac{ 1}{T_1} - \frac{1 }{T_2 })\\[/tex]
[tex]\ln( \frac{2k }{k}) = (\frac{E_{a} }{\text{8.314 J} \cdot \text{K}^{-1} \text{mol}^{-1} })(\frac{ 1}{\text{283.15 K}} - \frac{1 }{\text{295.15 K }})\\[/tex]
[tex]\ln2 = (\frac{ E_{a} }{\text{8.314 J} \cdot \text{K}^{-1} \text{mol}^{-1}}) \times 1.436 \times10^{-4}\\[/tex]
[tex]\ln2 = E_{a} \times 1.727 \times 10^{-5} \text{ mol} \cdot \text{J}^{-1}[/tex]
[tex]E_{a} = \frac{\ln2 }{ 1.727 \times10^{-5}\text{ mol} \cdot \text{J}^{-1}}\\[/tex]
[tex]E_{a} = \text{40 100 J}\cdot\text{mol}^{-1} = \textbf{40.1 kJ}\cdot \textbf{mol}^{-1}[/tex]