Answer:
The minimum value of C is -9
Step-by-step explanation:
we have
[tex]C=-2x+y[/tex]
[tex]x\geq -5[/tex]
[tex]x\leq 4[/tex]
[tex]y\geq -1[/tex]
[tex]y\leq 3[/tex]
using a graphing tool
The solution is the shaded rectangle
see the attached figure
The vertices of the rectangle are the points
[tex](-5,3),(4,3),(4,-1),(-5,-1)[/tex]
To find the the minimum value of C, substitute the value of x and the value of y of each vertex and calculate the value of C, then compare the results
For [tex](-5,3)[/tex]
[tex]C=-2(-5)+3=13[/tex]
For [tex](4,3)[/tex]
[tex]C=-2(4)+3=-5[/tex]
For [tex](4,-1)[/tex]
[tex]C=-2(4)-1=-9[/tex]
For [tex](-5,-1)[/tex]
[tex]C=-2(-5)-1=9[/tex]
therefore
The minimum value of C is -9