Respuesta :

Answer:

The minimum value of C is -9

Step-by-step explanation:

we have

[tex]C=-2x+y[/tex]

[tex]x\geq -5[/tex]

[tex]x\leq 4[/tex]

[tex]y\geq -1[/tex]

[tex]y\leq 3[/tex]

using a graphing tool

The solution is the shaded rectangle

see the attached figure

The vertices of the rectangle are the points

[tex](-5,3),(4,3),(4,-1),(-5,-1)[/tex]

To find the the minimum value of C, substitute the value of x and the value of y of each vertex and calculate the value of C, then compare the results

For [tex](-5,3)[/tex]

[tex]C=-2(-5)+3=13[/tex]

For [tex](4,3)[/tex]

[tex]C=-2(4)+3=-5[/tex]

For [tex](4,-1)[/tex]

[tex]C=-2(4)-1=-9[/tex]

For [tex](-5,-1)[/tex]

[tex]C=-2(-5)-1=9[/tex]

therefore

The minimum value of C is -9

Ver imagen calculista