Answer : b) 13/16
Given : t varies as v
So t = k v where k is the constant of proportionality.
t = 2 4/7 when v =13/14. Using these values we find out k
[tex]t = 2\frac{4}{7} =\frac{18}{7}[/tex]
[tex]v =\frac{13}{14}[/tex]
t = k * v
[tex]\frac{18}{7}= k *\frac{13}{14}[/tex]
Multiply by 14/13 on both sides
[tex]\frac{18}{7} *\frac{14}{13} = k *\frac{13}{14}*\frac{14}{13}[/tex]
So [tex]k =\frac{36}{13}[/tex]
We got the value of k. Now we find v when t = 2 1/4
[tex]t = 2\frac{1}{4} =\frac{9}{4}[/tex]
t = k * v
We know the value of t and k
[tex]\frac{9}{4}= \frac{36}{13}* v[/tex]
Multiply by 13/36 on both sides
[tex]\frac{9}{4} *\frac{13}{36} =\frac{36}{13}*\frac{13}{36}* v[/tex]
So [tex] \frac{13}{16}= v[/tex]
Option B is correct