Respuesta :

Answer : b) 13/16

Given : t varies as v

So t = k v  where k is the constant of proportionality.

t = 2 4/7 when v =13/14. Using these values we find out k

[tex]t = 2\frac{4}{7} =\frac{18}{7}[/tex]

[tex]v =\frac{13}{14}[/tex]

t = k * v

[tex]\frac{18}{7}= k *\frac{13}{14}[/tex]

Multiply by 14/13 on both sides

[tex]\frac{18}{7} *\frac{14}{13} = k *\frac{13}{14}*\frac{14}{13}[/tex]

So  [tex]k =\frac{36}{13}[/tex]

We got the value of k. Now we find v when t = 2 1/4

[tex]t = 2\frac{1}{4} =\frac{9}{4}[/tex]

t = k * v

We know the value of t and k

[tex]\frac{9}{4}= \frac{36}{13}* v[/tex]

Multiply by 13/36 on both sides

[tex]\frac{9}{4} *\frac{13}{36} =\frac{36}{13}*\frac{13}{36}* v[/tex]

So  [tex] \frac{13}{16}= v[/tex]

Option B is correct

Otras preguntas