Human body temperatures have a mean of 98.20 degrees Fahrenheit and a standard deviation of 0.62 degrees Fahrenheit. Convert 103.00 degrees Fahrenheit to a z-score and determine if it is usual of unusual. Unusual means that the z-score is more than 2 standard deviations below or above the mean.

Respuesta :

Answer:

z-score will be:  7.741....  and it will be unusual.

Step-by-step explanation:

Human body temperatures have a mean of 98.20 degrees Fahrenheit and a standard deviation of 0.62 degrees Fahrenheit.

So here,  [tex]\mu= 98.20[/tex] and [tex]\sigma= 0.62[/tex]

Formula for z-score is:   [tex]z= \frac{X-\mu}{\sigma}[/tex]

Thus, the z-score for 103.00 degrees Fahrenheit will be.......

[tex]z(X=103.00)= \frac{103.00-98.20}{0.62}=7.741...[/tex]

As, here the z-score is more than 2 standard deviations above the mean, so 103.00 degrees Fahrenheit is unusual for human body temperature.