( x - 3i√2)(x + 3i√2)
solve x² + 18 = 0
x² = - 18 ⇒ x = ±√- 18 = ±3i√2
factors are ( x - (3i√2))(x - (-3i√2))
x² + 18 = (x - 3i√2)(x + 3i√2)
Answer:
Factor of the expression x²+18 over the complex numbers is:
(x-i3√2)(x+i3√2)
Step-by-step explanation:
x²+18=0
⇒ x²= -18
⇒ x=±√(-18)
⇒ x=±i3√2
⇒ (x-i3√2)(x+i3√2)=0
Hence, factor of the expression x²+18 over the complex numbers is:
(x-i3√2)(x+i3√2)